Magnetic Properties of Ancient Sediments Bengawan Solo, Central Java-East Java, Indonesia

Authors

  • Budi Legowo Department of Physics, Sebelas Maret University, Jawa Tengah 57126, Indonesia
  • Shandiyano Putra Department of Physics, Sebelas Maret University, Jawa Tengah 57126, Indonesia https://orcid.org/0000-0001-7906-7774
  • Heri Purwanto Department of Physics, Sebelas Maret University, Jawa Tengah 57126, Indonesia https://orcid.org/0000-0001-7906-7774
  • Hamdi Rifai Department of Physics, Padang State University, Padang 25131, Indonesia
  • Wiwit Suryanto Department of Physics, Gadjah Mada University, Yogyakarta 55281, Indonesia
  • Budi Purnama Department of Physics, Sebelas Maret University, Jawa Tengah 57126, Indonesia

DOI:

https://doi.org/10.48048/tis.2023.6626

Keywords:

Bengawan solo, Miocene, Holocene, Sediment, Magnetic properties

Abstract

Information about the eruption of Mount Lawu in Central Java Province in 1885 and Mount Merapi in D.I. Yogyakarta in 2010 became a source for estimating the presence of magnetic minerals which underwent a sedimentation process in the Bengawan Solo River from upstream (Wonogiri) - downstream (Bojonegoro). The results we get of the magnetic susceptibility distribution of the Bengawan Solo sediments reveal that the sediment from the upper reaches of the Bengawan Solo River has a low frequency magnetic susceptibility value in upstream of around 1,080.23×10−8 m3/Kg - 2,780.77×10−8 m3/Kg, the middle part is 74.40×10−8 m3/Kg - 1,735.90×10−8 m3/Kg, and downstream 17.57×10−8 m3/Kg - 1,620.53×10−8 m3/Kg. The value of magnetic susceptibility decreased significantly from upstream to downstream. High susceptibility indicates the sample contains metal elements. In determining iron oxide, we use X-Ray Fluorescence assisted by X-Ray Diffractometer testing to determine magnetic minerals. X-Ray Fluorescence confirm metal oxide in the sample. There are Al and Fe confirm the presence of magnetic properties in sedimentation. The Vibrating Sample Magnetometer confirmed that the Bengawan Solo sediment has a magnetic saturation about 0.06 - 9.50 (emu/g), a magnetic remanent around 0.001 - 0.575 (emu/g) and coercivity field of around 10 - 60.15 (Oe). X-Ray Diffractometer pattern confirm the mineral structures, namely Coesite, Magnetite, Cristobalite, Portlandite, Quartz, Anatase, Goethite, Tridymite, Gibsyte, Stishovite, Grasullaria, Labradorite and Wuestite. These results indicate the novelty of sediments from Bengawan Solo, Central Java to East Java.

HIGHLIGHTS

We found several important points in this research:

  • The Bengawan Solo River is formed from several formations and lifting from faults
  • The Bengawan Solo River is rich in minerals formed from metal oxides
  • The magnetic value decreases with the distance from Mount Lawu
  • The Bengawan Solo River has confirmed ferromagnetic properties from the S-type hysterisis curve

With low magnetic remanent values, low saturation magnetism and high magnetic corrosivity


GRAPHICAL ABSTRACT

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

MF Hannum, IP Santikayasa and M Taufik. The use of dam environmental vulnerability index (DEVI) for assessing vulnerability of Bengawan Solo Watershed, Indonesia. Agromet 2020; 34, 110-20.

BG Koffman, MF Yoder, T Methven, L Hanschka, HB Sears, PL Saylor and KL Wallace. Glacial dust surpasses both volcanic ash and desert dust in its iron fertilization potential. Global Biogeochem. Cy. 2021; 35, e2020GB006821.

M Mariyanto, MF Amir, W Utama, AM Hamdan, S Bijaksana, A Pratama, R Yunginger and S Sudarningsih. Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia. Sci. Total Environ. 2019; 675, 632-41.

W Zhuo, B Lei, S Wu, F Yu, C Zhu, J Cui, Z Sun, D Ma, M Shi, H Wang, W Wang, T Wu, J Ying, S Wu, Z Wang, and X Chen. Manipulating ferromagnetism in few-layered Cr2Ge2Te6. Adv. Mater. 2021; 33, 2008586.

T Yin, KA Ulman, S Liu, AGd Águila, Y Huang, L Zhang, M Serra, D Sedmidubsky, Z Sofer, SY Quek, and Q Xiong. Chiral phonons and giant magneto-optical effect in CrBr3 2D magnet. Adv. Mater. 2021; 33, 2101618.

S Mugiraneza and AM Hallas. Tutorial: A beginner’s guide to interpreting magnetic susceptibility data with the curie-weiss law. Comm. Phys. 2022; 5, 95.

NP Prasetya, Utari, Y Iriani and B Purnama. The effect of annealing temperature on the structural and magnetic properties of lanthanum doped cobalt ferrite with the bengawan solo river fine sediment as the source of Fe3+. Key Eng. Mater. 2023; 940, 11-20.

Mariyanto and S Bijaksana. Magnetic properties of surabaya river sediments, East Java, Indonesia. AIP Conf. Proc. 2017; 1861, 030045.

A Juliansyah, S Zulaikah, N Mufti, EY Agustin, R Pujiastuti and BH Iswanto. Magnetic susceptibility of river sediment in polluted area of traditional gold mining in Kuris Sumbawa Indonesia. AIP Conf. Proc. 2020; 2251, 040020.

M Li, S Zhu, T Ouyang, J Tang and Z Tang. Magnetic properties of the surface sediments in the Yellow River Estuary and Laizhou Bay, Bohai Sea, China: Implications for monitoring heavy metals. J. Hazard. Mater. 2021; 410, 124579.

J Huang, W Jiao, J Liu, S Wan, Z Xiong, J Zhang, Z Yang, A Li , and T Li. Sediment distribution and dispersal in the southern South China Sea: Evidence from clay minerals and magnetic properties. Mar. Geol. 2021; 439, 106560.

J Yang, D Xia, Z Chen, S Wang, F Gao, X Liu, S Zhao, L Zhao, and Y Liu. Differentiating detrital and pedogenic contributions to the magnetic properties of aeolian deposits in the southern Tibetan Plateau: Implications for paleoclimatic reconstruction. Catena, 2023; 220, 106736.

F Wang, W Zhang, T Huang, Y Xu and Z Lai. Particle-size dependent magnetic property variations in the Yangtze delta sediments of late Holocene: Effects of pedogenesis and diagenesis. CATENA 2022; 209, 105832.

H Moulouel, A Bouchelouh, R Bensalem, MY Tebbouche, DA Benamar, EH Oubaiche, S Gharbi, D Machane, and A Benamghar. The Mahelma fault: A secondary structure of the Sahel anticline? Arabian J. Geosci. 2020; 13, 715.

M Roma, O Vidal-Royo, K McClay, O Ferrer and JA Muñoz. Tectonic inversion of salt-detached ramp-syncline basins as illustrated by analog modeling and kinematic restoration. Interpretation 2018; 6, T127-44.

S He, Q Qin, H Li and S Wang. Deformation differences in complex structural areas in the Southern Sichuan Basin and its influence on shale gas preservation: A case study of Changning and Luzhou areas. Front. Earth Sci. 2022; 9, 818534.

DC Tanner, H Buness, J Igela, T Gunther, G Gabriel, P Skiba, T Plenefisch, N Gestermann, and TR Walter. Fault detection. Understand. Faults 2020; 2020, 81-146.

Y Wang, ME Oskin, H Zhang, Y Li, X Hu and J Lei. Deducing crustal-scale reverse-fault geometry and slip distribution from folded river terraces, Qilian Shan, China. Tectonics 2020; 39, e2019TC005901.

JCA Joordens, FP Wesselingh, JD Vos, HB Vonhof and D Kroon. Relevance of aquatic environments for hominins: A case study from Trinil (Java, Indonesia). J. Hum. Evol. 2009; 57, 656-71.

W Joordens, JC D’Errico, F Wesselingh, FP Munro, SD Vos, J Wallinga, F d’Errico, FP Wesselingh, S Munro, JD Vos, J Wallinga, C Ankjærgaard, T Reimann, JR Wijbrans, KF Kuiper, HJ Mücher, H Coqueugniot, V Prié, I Joosten, BV Os, AS Schulp, M Panuel, VVD Haas, W Lustenhouwer, JJG Reijmer and W Roebroeks. Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 2015; 518, 228-31.

G Alink, W Roebroeks and T Simanjuntak. The Homo erectus site of Trinil: Past, present and future of a historic place. AMERTA 2016; 34, 99.

JC Hilgen, E Pop, S Adhityatama, TA Veldkamp, HWK Berghuis, I Sutisna, D Yurnaldi, GD Nivet, T Reimann, N Nowaczyk, KF Kuiper, W Krijgsman, HB Vonhof, DR Ekowati, G Alink, NLGDM Hafsari, O Drespriputra, A Verpoorte, R Bos, T Simanjuntak, B Prasetyo, and JCA Joordens. Revised age and stratigraphy of the classic Homo erectus-bearing succession at Trinil (Java, Indonesia). Quaternary Sci. Rev. 2023; 301, 107908.

E Venzke. Global volcanism program. Volcanoes of the World. Smithsonian Institution, Washington D.C., 2022. https://doi.org/10.5479/si.GVP.VOTW5-2022.5.0

GI Marliyani, H Helmi, JR Arrowsmith and A Clarke. Volcano morphology as an indicator of stress orientation in the Java Volcanic Arc, Indonesia. J. Volcanol. Geoth. Res. 2020; 400, 106912.

V Memoli, E Eymar, CG Delgado, F Esposito, L Santorufo, AD Marco, R Barile, and G Maisto. Total and fraction content of elements in volcanic soil: Natural or anthropogenic derivation. Sci. Total Environ. 2018; 625, 16-26.

DD Lestiani, R Apryani, L Lestari, M Santoso, EP Hadisantoso and S Kurniawati. Characteristics of trace elements in volcanic ash of kelud eruption in East Java, Indonesia. Indonesian J. Chem. 2018; 18, 457-63.

Q Ma, L Han, J Zhang, Y Zhang, Q Lang, F Li, A Han, Y Bao, K Li and S Alu. Environmental risk assessment of metals in the volcanic soil of Changbai mountain. Int. J. Environ. Res. Publ. Health 2019; 16, 2047.

M Liotta, MM Cruz, A Ferrufino, J Rüdiger, A Gutmann, KVR Cerda, N Bobrowski, and JMD Moor. Magmatic signature in acid rain at Masaya volcano, Nicaragua: Inferences on element volatility during lava lake degassing. Chem. Geol. 2021; 585, 120562.

RN Fajri, R Putra, CBD Maisonneuve, A Fauzi, Yohandri and H Rifai. Analysis of magnetic properties rocks and soils around the Danau Diatas, West Sumatra. J. Phys. Conf. 2019; 1185, 012024.

E Venzke. Global volcanism program. Volcanoes of the World. Smithsonian Institution, Washington D.C., 2023. https://doi.org/10.5479/si.GVP.VOTW5-2022.5.0

A Sasmita, H Rifai, R Putra, N Aisyah, M Phua, S Eisele, F Forni, and CBDL Maisonneuve. Identification of magnetic minerals in the peatlands cores from Lake Diatas West Sumatra, Indonesia. J. Phys. Conf. 2020; 1481, 012019.

R Padawangi, P Rabé and A Perkasa. River cities in asia: Water space in urban development and history. Amsterdam University Press B.V., Amsterdam, Netherlands, 2022.

S Matsu’ura, M Kondo, T Danhara, S Sakata, H Iwano, T Hirata, I Kurniawan, E Setiyabudi, Y Takeshita, M Hyodo, I Kitaba, M Sudo, Y Danhara, and Fachroel Aziz. Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 2020; 367, 210-4.

W Mwandira, K Nakashima and S Kawasaki. Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecol. Eng. 2017; 109, 57-64.

S Indiketiya, P Jegatheesan, P Rajeev and R Kuwano. The influence of pipe embedment material on sinkhole formation due to erosion around defective sewers. Transport. Geotechnics 2019; 19, 110-25.

R Tyszka, A Pietranik, A Potysz, J Kierczak and B Schulz. Experimental simulations of Zn-Pb slag weathering and its impact on the environment: Effects of acid rain, soil solution, and microbial activity. J. Geochem. Explor. 2021; 228, 106808.

C Zhao, D Mo, J Yuxiang, P Lu, L Bin, N Wang, M Chen, Y Liao, P Zhan, and Y Zhuang. A 7000-year record of environmental change: Evolution of holocene environment and human activities in the Hangjiahu Plain, the lower Yangtze, China. Geoarchaeology 2022, https://doi.org/10.1002/gea.21945.

H Mosaid, A Barakat, V Bustillo and J Rais. Modeling and mapping of soil water erosion risks in the Srou Basin (Middle Atlas, Morocco) using the EPM model, GIS and magnetic susceptibility. J. Landsc. Ecol. 2022; 15, 126-47.

VA Tiwow, Subaer, Sulistiawaty, JD Malago, MJ Rampe and M Lapa. Magnetic susceptibility of surface sediment in the Tallo tributary of Makassar city. J. Phys. Conf. 2021; 1899, 012124.

A Rahmi, H Rifai, R Rahmayuni, AN Yuwanda, DA Visgun and L Dwiridal. Irregular magnetic susceptibility pattern of iron sand from pasia jambak beach, Pasia Nan Tigo, Padang, Indonesia. J. Phys. Conf. 2022; 2309, 012027.

X Zhao, W Zhang, F Wang, QL Vu and Y Saito. Late Holocene sediment provenance change in the Red River Delta: A magnetic study, Catena. Catena 2023; 220, 106685.

S Putra, H Rifai, R Fadila, ED Ningsih and R Putra. Distribution of Pyroclastic deposits around Lake Maninjau Agam District, West Sumatera, Indonesia based on Magnetic Susceptibility. Trends Sci. 2022; 19, 3218.

F Laha, F Gashi, S Frančišković-Bilinski, H Bilinski and H Çadraku. Geospatial distribution of heavy metals in sediments of water sources in the Drini i Bardhë river basin (Kosovo) using XRF technique. Sustain. Water Resour. Manag. 2022; 8, 31.

G Jha, S Mukhopadhyay, AL Ulery, K Lombard, S Chakraborty, DC Weindorf, D VanLeeuwen and C Brungard. Agricultural soils of the animas river watershed after the gold king mine spill: An elemental spatiotemporal analysis via portable x-ray fluorescence spectroscopy. J. Environ. Qual. 2021; 50, 730-43.

F Riminucci, V Funari, M Ravaioli and L Capotondi. Trace metals accumulation on modern sediments from Po river prodelta, North Adriatic Sea. Mar. Pollut. Bull. 2022; 175, 113399.

L Wu, M Peng, S Qiao and M Xiao-yi. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil. Environ. Sci. Pollut. Res. 2018; 25, 3480-7.

VR Troll, FA Weis, E Jonsson, UB Andersson, SA Majidi, K Högdahl, C Harris, MA Millet, SS Chinnasamy, E Kooijman and KP Nilsson. Global Fe-O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nat. Comm. 2019; 10, 1712.

B Legowo, R Nailatunisrina, H Purwanto, B Purnama, and W Suryanto. Modelling of Volcano Lawu Fault Structure Using Gravity Anomaly to Determine Landslides Potential. IOP Conference Series: Earth and Environmental Science. 2022, p. 012025.

DP Maxba.uer, JM Feinberg, DL Fox and WC Clyde. Magnetic minerals as recorders of weathering, diagenesis, and paleoclimate: A core-outcrop comparison of Paleocene-Eocene paleosols in the Bighorn Basin, WY, USA. Earth Planet. Sci. Lett. 2016; 452, 15-26.

TN Chen, Ren-Xu Chen, Yong-Fei Zheng, Kun Zhou, Zhuang-Zhuang Yin, Zhi-Min Wang, Bing Gong, and Xiang-Ping Zha. The effect of supercritical fluids on Nb-Ta fractionation in subduction zones: Geochemical insights from a coesite-bearing eclogite-vein system. Geochim. Cosmochim. Acta 2022; 335, 23-55.

AG Niculescu, C Chircov and AM Grumezescu. Magnetite nanoparticles: Synthesis methods - a comparative review. Methods 2021; 199, 16-27.

Z Yan, W Xue and D Mei. Density functional theory study on the morphology evolution of hydroxylated β-Cristobalite silica and desilication in the presence of methanol. J. Phys. Chem. C 2021; 125, 7868-79.

D Approach, K Mohammad, S Uddin, M Izadifar and N Ukrainczyk. Dissolution of portlandite in pure water : Part 1 molecular. Materials 2022; 15, 1404.

S Liang, X Wang, C Ya-Jun, Y Xia and P Müller-Buschbaum. Anatase titanium dioxide as rechargeable ion battery electrode - a chronological review. Energ. Storage Mater. 2022; 45, 201-64.

V Payré, KL Siebach, MT Thorpe, P Antoshechkina and EB Rampe. Tridymite in a lacustrine mudstone in Gale Crater, Mars: Evidence for an explosive silicic eruption during the Hesperian. Earth Planet. Sci. Lett. 2022; 594, 117694.

A Klaassen, F Liu, F Mugele and I Siretanu. Correlation between electrostatic and hydration forces on silica and gibbsite surfaces: An atomic force microscopy study. Langmuir 2022; 38, 914-26.

M Gaft, G Waychunas, GR Rossman, L Nagli, A Goryachev and Y Raichlin. Zero-phonon Mn2+ luminescence in natural grossular Ca3Al2(SiO4)3. J. Lumin. 2022; 248, 119001.

JD Winter. An introduction to igneous and metamorphic petrology. Pearson College Div, London, 2001.

N Boda, Gopal Boda, K. Chandra Babu Naidu, M. Srinivas, Khalid Mujasam Batoo, D. Ravinder, and A. Panasa Reddy. Effect of rare earth elements on low temperature magnetic properties of Ni and Co-ferrite nanoparticles. J. Magn. Magn. Mater. 2019; 473, 228-35.

N Raghuram, TS Rao and KCB Naidu. Magnetic properties of hydrothermally synthesized Ba1–xSrxFe12O19 (x = 0.0–0.8) nanomaterials. Appl. Phys. Mater. Sci. Process. 2019; 125, 839.

A Gaffoor, KCB Naidu, D Ravinder, KM Batoo, SF Adil and M Khan. Synthesis of nano-NiXFe2O4 (X = Mg/Co) by citrate-gel method: Structural, morphological and low-temperature magnetic properties. Appl. Phys. Mater. Sci. Process. 2020; 126, 39.

TV Sagar, TS Rao and KCB Naidu. Effect of calcination temperature on optical, magnetic and dielectric properties of Sol-Gel synthesized Ni0.2Mg0.8−xZnxFe2O4 (x = 0.0–0.8). Ceram. Int. 2020; 46, 11515-29.

Downloads

Published

2022-03-10

How to Cite

Legowo, B., Putra, S. ., Purwanto, H. ., Rifai, H. ., Suryanto, W. ., & Purnama, B. . (2022). Magnetic Properties of Ancient Sediments Bengawan Solo, Central Java-East Java, Indonesia. Trends in Sciences, 20(5), 6626. https://doi.org/10.48048/tis.2023.6626

Most read articles by the same author(s)