Morphological Evolution of TiO2 Nanoparticle Deposited on QCM Sensor at Various Calcination Temperature

Authors

  • Dhafi Alvian Nugraha Physics Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
  • Safira Rachmaniar Physics Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
  • Rachmat T. Tjahjanto Chemistry Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
  • Setyawan P. Sakti Physics Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
  • Dionysius J. D. H. Santjojo Physics Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia
  • Masruroh Physics Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Indonesia

DOI:

https://doi.org/10.48048/tis.2023.7021

Keywords:

TiO2 nanoparticle, Ultrasonic spray pyrolysis, Calcination temperature, QCM sensor, Impedance analysis

Abstract

The morphology of TiO2 nanoparticles deposited on a QCM sensor is crucial in its mechanical loading. Different heating treatments transform the morphology of TiO2 nanoparticles, affecting the loading and hence shifting the resonant frequency and changing the impedance QCM value. In this research, the deposition of TiO2 nanoparticles was carried out above QCM using the ultrasonic spray pyrolysis (USP) technique with variations in calcination temperature of 200, 230, and 250 °C. The analysis results show that the increase in the agglomeration and particle size causes an increase in the inertial mass of TiO2 nanoparticles.

HIGHLIGHTS

  • The size of TiO2 agglomerates and their particles increases as the calcination temperature is raised
  • Higher calcination temperature resulted in a larger frequency shift of the QCM oscillation due to the layer inertial mass increase
  • Larger TiO2 nanoparticle size significantly increases the layer’s resistance, contributing to higher impedance


GRAPHICAL ABSTRACT

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

ALD Silva, FJ Trindade, D Jean-Lou, B Ramos, SCTA Carlos and D Gouvêa. Synthesis of TiO2 microspheres by ultrasonic spray pyrolysis and photocatalytic activity evaluation. Ceram. Int. 2022; 48, 9739-45.

M Ye, J Pan, Z Guo, X Liu and Y Chen. Effect of ball milling process on the photocatalytic performance of CdS/TiO2composite. J. Nanotechnology Rev. 2020; 9, 558-67.

B Zhang, S Cao, M Du, X Ye, Y Wang and J Ye. Titanium dioxide (Tio2) mesocrystals: Synthesis, growth mechanisms and photocatalytic properties. Catalysts 2019; 9, 91.

S Prasad, SS Kumar and VPM Shajudheen. Synthesis, characterization and study of photocatalytic activity of TiO2 nanoparticles. Mater. Today Proc. 2020; 33, 2286-8.

S Cao, N Sui, P Zhang, T Zhou, J Tu and T Zhang. TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J. Colloid Interface Sci. 2022; 607, 357-66.

B Chen, P Li, B Wang and Y Wang. Flame-annealed porous TiO2/CeO2 nanosheets for enhenced CO gas sensors. Appl. Surf. Sci. 2022; 593, 153418.

HG Pozos, KTV Krishna, MDLLO Amador, Y Kudriavtsev and AM Alvarez. TiO2 thin film based gas sensors for CO-detection. J. Mater. Sci. Mater. Electron. 2018; 29, 15829-37.

H Sun, T Lu-Qi, T Li, X Gao, T Sang, Y Li, Y Wei, G Wang, Z Peng, Y Gui, X Sheng-Yuan and J Li. TiO2−Doped GeSe monolayer: A highly selective gas sensor for SF6 decomposed species detection based on DFT method. Appl. Surf. Sci. 2022; 572, 151212.

A Haider, G Ali, MJ Haider, MS Edan, R Al-Obaidy, A Thamir, MM Hathal, EM Abbas and F Al-Sheikh. Modification optical properties of TiO2 nanostructure as solar cell. Energ. Rep. 2022; 8, 77-85.

VG Krishnan, A Purushothaman and P Elango. A study of the physical properties and gas-sensing performance of TiO2 nanofilms: Automated nebulizer spray pyrolysis method (ANSP). Phys. Status Solidi 2017; 214, 1700020.

AM Laera, L Mirenghi, G Cassano, L Capodieci, MC Ferrara, S Mazzarelli, M Schioppa, D Dimaio, A Rizzo, M Penza and L Tapfer. Synthesis of nanocrystalline ZnS/TiO2 films for enhanced NO2 gas sensing. Thin Solid Films 2020; 709, 138190.

S Ji, H Esmaeilzadeh, J Su, S Pagsuyoin and H Sun. Novel analysis of a micropillar coupled acoustic wave sensor. Sensor. Actuator. Rep. 2021; 3, 100034.

M Procek, A Stolarczyk, T Pustelny and E Maciak. A study of a QCM sensor based on TiO2 nanostructures for the detection of NO2 and explosives vapours in air. Sensors 2015; 15, 9563-81.

Q Chen, S Xu, Q Liu, J Masliyah and Z Xu. QCM-D study of nanoparticle interactions. Adv. Colloid Interface Sci. 2015; 233, 94-114.

A Alassi, M Benammar and D Brett. Quartz crystal microbalance electronic interfacing systems: A review. Sensors 2017; 17, 2799.

NL Bragazzi, D Amicizia, D Panatto, D Tramalloni, I Valle and R Gasparini. Quartz-crystal microbalance (QCM) for public health: An overview of its applications. Adv. Protein Chem. Struct. Biol. 2015; 101, 149-211.

SP Sakti, DD Kamasi and NF Khusnah. Stearic acid coating material loading effect to quartz crystal microbalance sensor. Mater. Today Proc. 2019; 13, 53-8.

RJ Horst, A Katzourakis, BT Mei and SD Beer. Design and validation of a low-cost open-source impedance based quartz crystal microbalance for electrochemical research. HardwareX 2022; 12, e00374.

M Masruroh and DJDH Santjojo. The impedance analysis of a viscoelastic petalous structured stearic acid functional layer deposited on a QCM. Sensors 2022; 22, 7504.

R Aflaha, H Afiyanti, ZN Azizah, H Khoirudin, A Rianjanu, A Kusumaatmaja, R Roto and K Triyana. Improving ammonia sensing performance of quartz crystal microbalance (QCM) coated with nanofibers and polyaniline (PANi) overlay. Biosens. Bioelectron. X 2023; 13, 100300.

S Phromma, T Wutikhun, P Kasamechonchung, T Eksangsri and C Sapcharoenkun. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Appl. Sci. 2020; 10, 993.

DP Dave and KV Chauhan. Synthesis of visible spectrum-active TiO2 thin film induced by RF magnetron sputtering. Mater. Today Proc. 2022; 62, 4254-9.

B Dey, S Bulou, W Ravisy, N Gautier, M Richard-Plouet, A Granier and P Choquet. Low-temperature deposition of self-cleaning anatase TiO2 coatings on polymer glazing via sequential continuous and pulsed PECVD. Surf. Coating. Tech. 2022; 436, 128256.

F Trabelsi, F Mercier, E Blanquet, A Crisci and R Salhi. Synthesis of upconversion TiO2:Er3+-Yb3+ nanoparticles and deposition of thin films by spin coating technique. Ceram. Int. 2020; 46, 28183-92.

Wahyudiono, S Kawai, M Mardis, S Machmudah, H Kanda, Y Zhao and M Goto. Bimetallic nanoparticle generation from Au − TiO2 film by pulsed laser ablation in an aqueous medium. Alexandria Eng. J. 2021; 60, 2225-34.

KS Shamala and M Vishwas. Influence of substrate temperature on optical, structural and dielectric properties of TiO2 thin films prepared by spray pyrolysis technique. Mater. Today Proc. 2022; 52, 1344-7.

SR Ardekani, ASR Aghdam, M Nazari, A Bayat, E Yazdani and E Saievar-Iranizad. A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter. J. Anal. Appl. Pyrol. 2019; 141, 104631.

P Majerič, D Jenko, B Friedrich and R Rudolf. Formation mechanisms for gold nanoparticles in a redesigned ultrasonic spray pyrolysis. Adv. Powder Tech. 2017; 28, 876-83.

J Banjuraizah, YP Ong and ZA Ahmad. Effect of calcination temperature on titanium dioxide synthesized by Sol-Gel method. Int. J. Curr. Res. Sci. Eng. Tech. 2018; 1, 68.

R Rudolf, Ž Jelen, S Stopić and IP Majerič. Ultrazvočna razpršilna piroliza materialov, na primeru TiO2 nanodelcev. Anali PAZU 2022; 11, 52-63.

L González-Reyes, I Hernández-Pérez, LA Díaz-Barriga, H Dorantes-Rosales, E Arce-Estrada, R Suárez-Parra and JJ Cruz-Rivera. Temperature effects during Ostwald ripening on structural and bandgap properties of TiO2 nanoparticles prepared by sonochemical synthesis. Mater. Sci. Eng. B 2010; 175, 9-13. 2010,

M Abdul and A Qabazard. Resonance circuits and applications. Int. J. Inventive Eng. Sci. 2015; 3, 6-13.

DAP Wardani, B Hariyanto, N Kurniawati, NP Har, N Darmawan and Irzaman. Synthesis of silicon dioxide (SiO2) from reeds biomass (Imperata cylindrica) and the analysis of electrical properties (study cases: Impedance, resistance, capacitive reactance, inductive reactance). J. Phys. Conf. Ser. 2021; 2019, 012064.

X Qiao, X Zhang, Y Tian and Y Meng. Progresses on the theory and application of quartz crystal microbalance. Appl. Phys. Rev. 2016; 3, 031106.

G Sauerbrey. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Zeitschrift für Physik 1959; 155, 206-22.

I Burda. Quartz crystal microbalance with impedance analysis based on virtual instruments: Experimental study. Sensors 2022; 22, 1506.

Downloads

Published

2023-08-28

How to Cite

Nugraha, D. A. ., Rachmaniar, S. ., Tjahjanto, R. T. ., Sakti, S. P. ., Santjojo, D. J. D. H. ., & Masruroh, M. (2023). Morphological Evolution of TiO2 Nanoparticle Deposited on QCM Sensor at Various Calcination Temperature. Trends in Sciences, 20(11), 7021. https://doi.org/10.48048/tis.2023.7021