Evaluation of the Permeability of Clay-Lime Mixtures for Hazardous Waste Insulation Barriers, Case of Southern Algeria (Adrar)

Authors

  • Belaidi Khedidja Faculty of Technology, EOLE laboratory, University of Tlemcen, Tlemcen, Algeria
  • Zadjaoui Abdeldjalil Department of Civil Engineering, University Abou-bekr Belkaid, Tlemcen, Algeria
  • Mekerta Belkacem Laboratoire de Recherche, Laboratoire Matériaux - LabMat - Ecole Nationale Polytechnique d’Oran, Maurice Audin, Algeria
  • Bassoud Abdelkader Faculty of Science and Technology, Department of Civil Engineering, University Ahmed draia, Adrar, Algeria
  • Allal Mohamed-Amine Department of Civil Engineering, University Abou-bekr Belkaid, Tlemcen, Algeria

DOI:

https://doi.org/10.48048/tis.2024.7725

Abstract

Containment of hazardous waste is one of the methods that can be used today for its disposal worldwide, especially in landfills. In order to preserve groundwater, landfills are constructed on a natural or reconstituted clay layer of low permeability, known as a passive safety barrier. 

This paper presents an experimental laboratory study that aims to upgrade local materials for use as a passive barrier in the bottoms of hazardous waste storage facilities (HWSCs). The basic materials are clays from the Adrar region in southern Algeria. An experimental study based on physical-chemical characterization and mechanical tests was performed on 2 samples of clayey soils (AA, Adrar clay, and AB, Bouda clay). Physico-chemical and mechanical characterization of Adrar clay (AA) mixtures with lime was conducted to minimize swelling and improve the studied soil. The permeability criterion allowed the adoption of an optimal mixture of Adrar clay + 6 % lime for a permeability lower than 10–12 m/s. 

HIGHLIGHTS  

  • Ideal solution to protect natural groundwater resources using local materials, clay and lime
  • Large area exceeding 30 km2 of clay sources and including sources of oil pollution
  • Noticeable improvement in clay properties thanks to the addition of lime to reduce swelling
  • The treated clay has a very low permeability value, lower than 10−12 m/s and is ideal for hazardous waste storage centers

GRAPHICAL ABSTRACT

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

L Fnade. Déchets dangereux, Available at: https://www.fnade.org/fr/produire-matieres-energie/ dechets-dangereux, accessed May 2023.

A Kumar, AK Thakur, GK Gaurav, JJ Klemeš, VK Sandhwar, KK Pant and R Kumar. A critical review on sustainable hazardous waste management strategies: A step towards a circular economy. Environ. Sci. Pollut. Res. Int. 2023; 30, 105030-55.

MK Gueddouda, I Goual, B Benabed, S Taibi and N Aboubekr. Hydraulic properties of dune sand-bentonite mixtures of insulation barriers for hazardous waste facilities. J. Rock Mech. Geotech. Eng. 2016; 8, 541-50.

M Lamara, C Tarek, S Amara and MK Gueddouda. Protection de l’environnement à travers la valorisation de sable de dune dans les régions articles. In: Proceedings of the 1er Colloque International CBE, Jijel, Algeria. 2014.

S Kouloughli and MB Lehocine. Etude des mélanges sable-bentonite utilisés dans la construction de barrières de confinement de déchets solides. Sciences & Technologie. Université Mentouri, Constantine, Algérie, 2007, p. 34-42.

N Heidarzadeh and P Parhizi. Improving the permeability and adsorption of phenol by organophilic clay in clay liners. Environ. Res. Eng. 2019; 25, 96-103.

RP Chapuis. Sand-bentonite liners: Predicting permeability from laboratory tests. Can. Geotech. J. 1990; 27, 47-57.

J Sobti and SK Singh. Techno-economic analysis for barrier materials in landfills. Int. J. Geotech. Eng. 2016; 11, 467-78.

YJ Cui, AM Tang, C Loiseau and P Delage. Determining the unsaturated hydraulic conductivity of a compacted sand-bentonite mixture under constant-volume and free-swell conditions. Phys. Chem. Earth Parts A B C 2008; 33, S462-S471.

A Demdoum, MK Gueddouda, I Goual and B Benabed. Geotechnical characterization of geomaterial blends with bentonite of Maghnia for use as landfill liners. J. Mater. Process. Environ. 2016; 4, 48-54.

A Demdoum, MK Gueddouda, I Goual, H Souli and MS Ghembaza. Effect of landfill leachate on the hydromechanical behavior of bentonite-geomaterials mixture. Construct. Build. Mater. 2020; 234, 117356.

MU Shankar and M Muthukumar. Comprehensive review of geosynthetic clay liner and compacted clay liner. IOP Conf. Ser. Mater. Sci. Eng. 2017; 263, 032026.

AH Ören and RÇ Akar. Swelling and hydraulic conductivity of bentonites permeated with landfill leachates. Appl. Clay Sci. 2017; 142, 81-9.

R Holtz, WD Kovacs. An introduction to geotechnical engineering. Prentice-Hall Englewood Cliffs, New Jersey, 1981.

DE Daniel. Predicting hydraulic conductivity of clay liners. J. Geotech. Eng. 1984; 110, 285-300.

N Mosavat and Z Nalbantoglu. The impact of hazardous waste leachate on performance of clay liners. Waste Manag. Res. 2013; 31, 194-202.

DE Daniel and YK Wu. Compacted clay liners and covers for arid sites. J. Geotech. Eng. 1993; 119, 223-37.

AA Amadi and AO Eberemu. Potential application of lateritic soil stabilized with cement kiln dust (CKD) as liner in waste containment structures. Geotech. Geol. Eng. 2013; 31, 1221-30.

TD Tsai and PA Vesilind. A new landfill liner to reduce ground-water contamination from heavy metals. J. Environ. Eng. 1998; 124, 1061-5.

I Bozbey and E Guler. Laboratory and field testing for utilization of an excavated soil as landfill liner material. Waste Manag. 2006; 26, 1277-86.

A Dąbska. Hydraulic conductivity of compacted lime-softening sludge used as landfill liners. Water Air Soil Pollut. 2019; 230, 280.

Z Bounouara, S Malab, B Mekerta, A Benaissa and SA Bourokba. Treatment of dredged sediments of bouhanifia dam for their valorization in passive barrier of landfill. Geotech. Geol. Eng. 2020; 38, 3997-4011.

AO Shakir and H Ali. The effect of lining material on the permeability of clayey soil. Civ. Eng. J. 2019; 5, 662.

MC Rahmani. Durabilité des fondations d’un centre de stockage de déchets vis-à-vis des sollicitations de service. Mémoire de magister. Ecole Nationale Polytechnique d’Oran, Algeria, 2014.

DA Rubinos, G Spagnoli and MT Barral. Assessment of bauxite refining residue (red mud) as a liner for waste disposal facilities. Int. J. Min. Reclamat. Environ. 2013; 29, 433-52.

E Kalkan. Utilization of red mud as a stabilization material for the preparation of clay liners. Eng. Geol. 2006; 87, 220-9.

M Banar, Y Güney, A Özkan, Z Günkaya, E Bayrakcı and D Ulutaş. Utilisation of waste clay from boron production as a landfill liner material. Int. J. Min. Reclamat. Environ. 2017; 33, 206-22.

Q Zhao, H Choo, A Bhatt, SE Burns and B Bate. Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. Appl. Clay Sci. 2017; 142, 2-20.

A Fathollahi, S Gitipour, MA Hosseinpour and N Heidarzadeh. Application of modified clays in geosynthetic clay liners for containment of petroleum contaminated sites. Int. J. Environ. Res. 2015; 9, 317-22.

A Tuncan, MI Onur, K Akpinar and M Tuncan. Use of sepiolite and zeolite mixtures as a landfill liner. Int. J. Waste Res. 2016; 06, 197.

WJ Green, GF Lee and RA Jones. Clay-soils permeability and hazardous waste storage. J. Water Pollut. Contr. Fed. 1981; 58, 1347-54.

FZ Daoud and G Auvinet. 1996, La perméabilité des sols fins compactés. Ph. D. Dissertation. Institut national polytechnique de Lorraine, Vandoeuvre-lès-Nancy, France.

BL Runigo, YJ Cui, V Ferber and D Deneele. Impact of initial state on the fabric and permeability of a lime-treated silt under long-term leaching. Can. Geotech. J. 2009; 46, 1243-57.

CH Benson, H Zhai and X Wang. Estimating hydraulic conductivity of compacted clay liners. J. Geotech. Eng. 1994; 120, 366-87.

TL Shelley and DE Daniel. Effect of gravel on hydraulic conductivity of compacted soil liners. J. Geotech. Eng. 1993; 119, 54-68.

Dauphin. Géological map Algéria. Géological 2007; 12, 10.

S Wild, M Arabi and G Rowlands. Relation between pore size distribution, permeability, and cementitious gel formation in cured clay - lime systems. Mater. Sci. Tech. 1987; 3, 1005-11.

J Locat, H Trembaly and S Leroueil. Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime. Can. Geotech. J. 1996; 33, 654-69.

LD McCallister and TM Petry. Leach tests on lime-treated clays. Geotech. Test. J. 1992; 15, 106-14.

SN Rao and G Rajasekaran. Lime injection technique to improve the behaviour of soft marine clays. Ocean Eng. 1994; 21, 29-43.

DL Townsend and TW Klym. Durability of lime-stabilized soils. Committee on Lime and Lime-Fly Ash Stabilization, Kingston, Ontario, 1966, p. 25-41.

C Silvani, LCDFL Lucena, EAG Tenorio, HCS Filho and NC Consoli. Key Parameter for swelling control of compacted expansive fine-grained soil-lime blends. J. Geotech. Geoenvironmental Eng. 2020; 146, 06020012.

L Moretti, S Natali, A Tiberi and A D’Andrea. Proposal for a methodology based on XRD and SEM-EDS to monitor effects of lime-treatment on clayey soils. Appl. Sci. 2020; 10, 2569.

AM Raheem. Controlling the permeability of sandy soil using different local waste materials. Key Eng. Mater. 2020; 857, 302-10.

JM Marcoen, D Tessier, T Jacques, A Monjoie and C Schroeder. Manuel relatif aux matières naturelles pour barrières argileuses ouvragées pour CET (centres d’enfouissement technique) et réhabilitation de dépotoirs en région wallonne. Office wallon des déchets, Namur, Belgium, 2000, p. 110-554.

H Souli, JM Fleureau, MT Ayadi and M Besnard. Physicochemical analysis of permeability changes in the presence of zinc. Geoderma 2008; 145, 1-7.

P Thériault. Etude de l’influence des metaux lourds sur la conductivite hydraulique de couches sable/bentonite. Universite Laval, Quebec, Canada, 2001.

I Yilmaz and M Marschalko. The effect of different types of water on the swelling behaviour of expansive clays. Bull. Eng. Geol. Environ. 2014; 73, 1049-62.

SA Bellal, M Hadeid, T Ghodbani and O Dari. Accès à l’eau souterraine et transformations de l’espace oasien: Le cas d’Adrar (Sahara du Sud-ouest algérien). Cahiers De Géographie Du Québec 2016; 60, 29-56.

S Ouali, B Mehmah and M Ali. Etude de faisabilité d’utilisation des eaux thermales de Zelfana Dans la Production d’Hydrogène. Centre de Développement des Energies Renouvelables, Ghardaïa, Algeria, 2007.

A Bassoud, H Khelafi, AM Mokhtari and A Bada. Evaluation of summer thermal comfort in arid desert areas. Case study: Old adobe building in Adrar (South of Algeria). Build. Environ. 2021; 205, 108140.

F Tournier, E Portier and M Pagel. Control of pressure dissolution and quartz cementation on the reservoir quality of glacial ordovician sandstones from the Sbaa basin, Algeria. In: Proceedings of the North Africa Technical Conference and Exhibition, Cairo, Egypt. 2010.

FH Chen. Foundations on expansive soils. Elsevier, Amsterdam, Netherlands, 2012.

J Serratrice and B Soyez. Les essais de gonflement. Bulletin Des Laboratoires Des Ponts Et Chaussées 1996; 204, 65-86.

YST Kiki. 2016, Caractérisation minéralogique, thermique et microscopique des sols fins en technique routière. Ph. D. Dissertion. Université de Bordeaux, Université d’Abomey-Calav, France.

I Jarraya, S Fourmentin and M Benzina. Adsorption de Cov par un matériau argileux tunisien organo-modifié. Journal De La Société Chimique De Tunisie 2010; 12, 139-49.

A Qlihaa, S Dhimni, F Melrhaka, N Hajjaji and A Srhiri. Caractérisation physico-chimique d’une argile Marocaine (Physico-chemical characterization of a morrocan clay). Mater. Environ. Sci. 2016; 7, 1741-50.

FZ Batana, MB Taouti and A Guibadj. Cinétique de l’adsorption du bleu de méthylène sur bentonite brute et traitée. Algerian J. Environ. Sci. Tech. 2019; 5, 1113-20.

A Besq, C Malfoy, A Pantet, P Monnet and D Righi. Physicochemical characterisation and flow properties of some bentonite muds. Appl. Clay Sci. 2003; 23, 275-86.

H Sadki, K Ziat and M Saidi. Adsorption d’un colorant cationique d’un milieu aqueux sur une argile locale activée (adsorption of dyes on activated local clay in aqueous solution). Mater. Environ. Sci. 2014; 5, 2060-5.

A Hachichi and JM Fleureau. Caractérisation et stabilisation de quelques sols gonflants d’Algérie. Revue Française De Géotechnique 1999; 86, 37-51.

C Truche. 2010, Caractérisation et quantification des minéraux argileux dans les sols expansifs par spectroscopie infrarouge aux échelles du laboratoire et du terrain. Ph. D. Dissertion. Paul Sabatier University, Toulouse, France.

A Skempton. The colloidal activity of clays. International Society For Soil Mechanics and Geotechnical Engineering, Switzerland, 1953, p. 106-18.

RD Holtz and WD Kovacs. Introduction à la géotechnique. Presses inter Polytechnique, France, 1991.

TN Lan. Utilisation de l’essai au bleu de méthylène en terrassement routier. Bulletin Ee Liaison Des Laboratoires Des Ponts Et Chaussées 1981; 111, 5-16.

D Lautrin. Une procédure rapide d’identification des argiles. Bulletin Ee Liaison Des Laboratoires Des Ponts Et Chaussées 1987; 152, 75-84.

F Bultel. 2001, Prise en compte du gonflement des terrains dans le dimensionnement des revêtements des tunnels. Ph. D. Dissertion. École Nationale Des Ponts et Chaussées, Paris, France.

Y Yukselen and A Kaya. Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng. Geol. 2008; 102, 38-45.

JK Mitchell and K Soga. Fundamentals of soil behavior. John Wiley & Sons, New York, 2005.

RE Grim. Physico-chemical properties of soils: Clay minerals. J. Soil Mech. Foundations Div. 1959; 85, 0000179.

A Williams and G Donaldson. Developments relating to building on expansive soils in South Africa, 1973-1980. National Building Research Institute, Gauteng, South Africa, 1980.

G Philipponnat, B Hubert and A Isnard. Fondations et ouvrages en terre. Eyrolles, Paris, 2000.

G Sanglerat and J Costet. Cours pratique de mécanique des sols. Dunod, Paris, 1969.

Norme française. Sols: Reconnaissance et essais - Détermination de la masse volumique des particules solides des sols - Méthode du pycnomètre à eau. Norme française, France, 1991.

Norme française. Sols: Reconnaissance et essais - Détermination des limites d’Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau. Norme française, France, 1993.

Norme française. Sols: Reconnaissance et essais, Analyse granulométrique des sols-Méthode par sédimentométrie. AFNOR, Paris, 1992.

Norme française. Sols: Reconnaissance et essais - Détermination de la teneur pondérale en matières organiques d’un sol - Méthode chimique. Norme française, France, 1993.

Norme française. Soils: Investigation and testing. Measuring of the methylene blue adsorption capacity of à rocky soil. Determination of the methylene blue of à soil by means of the stain test. Norme française, France, 1998.

Norme française. Sols: Reconnaissance et essais - Détermination des références de compactage d’un matériau - Essai Proctor Normal - Essai Proctor modifié. Norme française, France, 1999.

FG Bell. Lime stabilization of clay minerals and soils. Eng. Geol. 1996; 42, 223-37.

JL Eades and RE Grim. A quick test to determine lime requirements for lime stabilization. Highway Res. Rec. 1966; 139, 61-72.

L Bakaiyang, J Madjadoumbaye, Y Boussafir, F Szymkiewicz and M Duc. Re-use in road construction of a Karal-type clay-rich soil from North Cameroon after a lime/cement mixed treatment using two different limes. Case Stud. Construct. Mater. 2021; 15, e00626.

R Djelloul. 2018, Influence de l’ajout de chaux et de ciment sur les proprietes physico-mecaniques d’une argile naturelle de la region d’oran en vue de sa valorisation en construction routiere. Ph. D. Dissertion. Université des Sciences et de la Technologie d’Oran Mohamed-Boudiaf, Oran, Algeria.

JA Baldovino, EB Moreira, W Teixeira, RLS Izzo and JL Rose. Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil. J. Rock Mech. Geotech. Eng. 2018; 10, 188-94.

DA Emarah and SA Seleem. Swelling soils treatment using lime and sea water for roads construction. Alexandria Eng. J. 2018; 57, 2357-65.

A Al-Taie, MM Disfani, R Evans, A Arulrajah and S Horpibulsuk. Swell-shrink cycles of lime stabilized expansive subgrade. Procedia Eng. 2016; 143, 615-22.

N Cabane. 2004, Sols traités à la chaux et aux liants hydrauliques: Contribution à l’identification et à l’analyse des éléments perturbateurs de la stabilisation. Ph. D. Dissertion. Université Jean Monnet, Saint-Étienne, France.

NT Tran. 2009, Valorisation de sédiments marins et fluviaux en technique routière. Ph. D. Dissertion. Université d’Artois, Artois, France.

VD Tran. 2013, Étude de l’amélioration des sols par traitement à la chaux. Master Thesis. Université de Liège, Belgique, France.

CD Rogers and S Glendinning. Lime requirement for stabilization. Transport. Res. Rec. 2000; 1721, 9-18.

FHM Portelinha, DC Lima, MPF Fontes and CAB Carvalho. Modification of a lateritic soil with lime and cement: An economical alternative for flexible pavement layers. Soils Rocks 2012: 35, 51-63.

E Kalkan. Impact of wetting - drying cycles on swelling behavior of clayey soils modified by silica fume. Appl. Clay Sci. 2011; 52, 345-52.

CDF Rogers, S Glendinning and TEJ Roff. Lime modification of clay soils for construction expediency. Proc. Inst. Civ. Eng. Geotech. Eng. 1997; 125, 242-9.

TTH Nguyen. 2015, Stabilisation des sols traités à la chaux et leur comportement au gel. Ph. D. Dissertion. Université Paris-Est, Marne-la-Vallée, France.

A Lasledj. 2009, Traitement des sols argileux à la chaux: Processus physico-chimique et propriétés géotechniques. Ph. D. Dissertion. Université d’Orléans, Orléans, France.

SA Khattab, M Al-Mukhtar and JM Fleureau. Long-term stability characteristics of a lime-treated plastic soil. J. Mater. Civ. Eng. 2007; 19, 358-66.

A Meddah, AE Goufi and L Pantelidis. Improving very high plastic clays with the combined effect of sand, lime, and polypropylene fibers. Appl. Sci. 2022; 12, 9924.

MH Ghobadi, R Babazadeh and Y Abdilor. Utilization of lime for stabilizing marly soils and investigating the effect of pH variations on shear strength parameters. J. Eng. Geol. 2014; 8, 1939-62.

MA Bourabah. 2012, Comportement mécanique des sols fins, application à la valorisation des sédiments de barrages en technique routière. Ph. D. Dissertion. Uniersité Abou Bekr Belkaïd Tlemcen, Tlemcen, Algeria.

Z Metelková, J Boháč, I Sedlářová and R Přikryl. Changes of pore size and of hydraulic conductivity by adding lime in compacting clay liners. Charles University in Prague, Staré Město, Czechia, 2011.

GH Hilt and DT Davidson. Lime fixation in clayey soils. Highway Res. Board Bull. 1960; 262, 13.

S GhavamShirazi and H Bilsel. Characterization of volume change and strength behavior of micro-silica and lime-stabilized Cyprus clay. Acta Geotechnica 2020; 16, 827-40.

F Zhu, Z Li, W Dong and Y Ou. Geotechnical properties and microstructure of lime-stabilized silt clay. Bull. Eng. Geol. Environ. 2018; 78, 2345-54.

T Olinic and E Olinic. The effect of quicklime stabilization on soil properties. Agr. Agr. Sci. Procedia 2016; 10, 444-51.

SAB Mrabent, A Hachichi, H Souli, S Taibi and JM Fleureau. Effect of lime on some physical parameters of a natural expansive clay from Algeria. Eur. J. Environ. Civ. Eng. 2015; 21, 108-25.

M Afès and G Didier. Stabilisation des sols gonflants: Cas d’une argile en provenance de Mila (Algérie). Bull. Eng. Geol. Environ. 2000; 59, 75-83.

BG Gidday and S Mittal. Improving the characteristics of dispersive subgrade soils using lime. Heliyon 2020; 6, e03384.

AM Al-Swaidani, I Hammoud and A Meziab. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil. J. Rock Mech. Geotech. Eng. 2016; 8, 714-25.

A Smaida, B Mekerta and MK Gueddouda. Physico-mechanical stabilization of a high swelling clay. Construct. Build. Mater. 2021; 289, 123197.

M Rosone, B Megna and C Celauro. Analysis of the chemical and microstructural modifications effects on the hydro-mechanical behaviour of a lime-treated clay. Int. J. Geotech. Eng. 2019 ; 15, 447-60.

H Brandl. Alteration of soil parameters by stabilization with lime. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden. 2020, p. 587-94.

M Awad, IM Al-Kiki and AA Khalil. Permeability of expansive soils modified/stabilized with lime (review paper). Diyala J. Eng. Sci. 2021; 14, 129-40.

E Garzón, M Cano, BC O`Kelly and PJ Sánchez-Soto. Effect of lime on stabilization of phyllite clays. Appl. Clay Sci. 2016; 123, 329-34.

AA Basma and ER Tuncer. Effect of lime on volume change and compressibility of expansive clays. Transport. Res. Rec. 1991; 1295, 52-61.

M Al-Mukhtar, S Khattab and JF Alcover. Microstructure and geotechnical properties of lime-treated expansive clayey soil. Eng. Geol. 2012; 139-140, 17-27.

Z Belabbaci. 2014, Stabilisation des sols gonflants. Ph. D. Dissertation, Uniersité Abou Bekr Belkaïd Tlemcen, Tlemcen, Algeria.

Z Nalbantoglu and ER Tuncer. Compressibility and hydraulic conductivity of a chemically treated e×pansive clay. Can. Geotech. J. 2001; 38, 154-60.

A Khattab and S Adrees. Etude multi-échelles d’un sol argileux plastique traité à la chaux. Université d’Orléans, France, 2002.

A Herzog and JK Mitchell. Reactions accompanying stabilization of clay with cement. Highway Res. Rec. 1963; 36, 146-71.

A Yousuf, SO Manzoor, M Youssouf, ZA Malik and KS Khawaja. Fly ash: Production and utilization in India-an overview. J. Mater. Environ. Sci. 2020; 11, 911-21.

SO Manzoor and A Yousuf. Stabilisationof soils with lime: A review. J. Mater. Environ. Sci. 2020; 11, 1538-51.

LD McCallister. The effects of leaching on lime-treated expansive clays. The University of Texas at Arlington, Texas, 1990.

BL Runigo. Durabilité du limon de Jossigny traité à la chaux et soumis à différentes sollicitations hydriques: Comportements hydraulique, microstructural et mécanique. HAL, France, 2008.

IMA Al-Kiki, KAK Al-Juari and SAA Khattab. Strength, durability and hydraulic properties of clayey soil stabilized with lime and industrial waste lime. Al Rafidain Eng. J. 2008; 16, 102-16.

H Ali and M Mohamed. The effects of lime content and environmental temperature on the mechanical and hydraulic properties of extremely high plastic clays. Appl. Clay Sci. 2018; 161, 203-10.

Y Millogo, JC Morel, K Traoré and R Ouedraogo. Microstructure, geotechnical and mechanical characteristics of quicklime-lateritic gravels mixtures used in road construction. Construct. Build. Mater. 2012; 26, 663-9.

N Ural. The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosci. 2021; 13, 197-218.

Downloads

Published

2024-05-10

How to Cite

Khedidja, B., Abdeldjalil, Z., Belkacem, M., Abdelkader, B., & Mohamed-Amine, A. (2024). Evaluation of the Permeability of Clay-Lime Mixtures for Hazardous Waste Insulation Barriers, Case of Southern Algeria (Adrar). Trends in Sciences, 21(7), 7725. https://doi.org/10.48048/tis.2024.7725