The Effect of Fermentation Time, pH and Saccharomyces Cerevisiae Concentration for Bioethanol Production from Ulva Reticulata Macroalgae

Authors

  • Sefrinus Maria Dolfi Kolo Department of Chemistry, Faculty of Agricultural, Science and Health, University of Timor, Kefamenanu 85614, Indonesia
  • Noviana Mery Obenu Department of Chemistry, Faculty of Agricultural, Science and Health, University of Timor, Kefamenanu 85614, Indonesia
  • Patrisius Maryanto Bria Department of Chemistry, Faculty of Agricultural, Science and Health, University of Timor, Kefamenanu 85614, Indonesia
  • Wilfrida Hoar Klau Department of Chemistry, Faculty of Agricultural, Science and Health, University of Timor, Kefamenanu 85614, Indonesia
  • Maria Odila Abi Department of Chemistry, Faculty of Agricultural, Science and Health, University of Timor, Kefamenanu 85614, Indonesia
  • Jessieca Skolastika Tae Department of Chemistry, Faculty of Agricultural, Science and Health, University of Timor, Kefamenanu 85614, Indonesia
  • Deana Wahyuningrum Organic Chemistry Research Group, Institut Teknologi Bandung, Bandung 40132, Indonesia

DOI:

https://doi.org/10.48048/tis.2024.7484

Keywords:

Ulva reticulata, Acid hydrolysis, CEM microwave, Fermentation time, Bioethanol

Abstract

Research has been carried out on the effect of pH, fermentation time and yeast concentration on bioethanol production through hydrolysis using a CEM (Ceramic Elekctromagnetic Microwave) synthesizer and bioethanol production from Ulva reticulata seaweed. Ulva reticulata seaweed contains carbohydrates in the form of heteropolysaccharides such as glucose, arabinose, ramnose and xylose which are very abundant and suitable for conversion into bioethanol because the people of Timor Island do not use them as food. The carbohydrate content of Ulva reticulata seaweed can be converted into hexose and pentose sugars (glucose, arabinose, ramnose and xylose) through hydrolysis using 3 types of acid catalysts, namely hydrochloric acid (HCl), sulfuric acid (H2SO4) and nitric acid (HNO3). Fermentation was carried out with S. cerevisiae concentration variation of 6; 8; 10; 12 % (v/v) and fermentation time variation of 3; 5; 7; 9 days and a pH variation of 4; 4.5; 5; 5.5 at a temperature of 30 °C. Reducing sugar characterization used the Dinitrosalicylic acid (DNS) reagent, sample surface texture analysis was carried out using Scanning Electron Microscopy (SEM) and ethanol characterization used Gas Chromatography-Flame Ionization Detector (GC-FID). The results of surface texture analysis before and after hydrolysis experienced significant changes. Optimal conditions for hydrolysis of Ulva reticulata seaweed using sulfuric acid (H2SO4) combined with a CEM synthesizer at an acid concentration of 3 % (v/v) with irradiation power of 200 watts for 50 min at a temperature of 150 °C, produced reducing sugar of 97.06 g/L. The results of GC-FID analysis indicated that bioethanol concentration obtained at optimal conditions of pH 4.5 was 42.32 %, S. cerevisiae concentration was 12 % with a bioethanol content of 42.53 % at a fermentation time of 5 days. This research is expected to provide information for researchers and industry to overcome world energy problems and environmental pollution through Ulva reticulata waste.

HIGHLIGHTS

The results of surface texture analysis before and after hydrolysis experienced significant changes. Optimum conditions for hydrolysis of Ulva reticulata seaweed using sulfuric acid (H2SO4) combined with a CEM synthesizer at an acid concentration of 3 % (v/v) with irradiation power of 200 watts for 50 min at a temperature of 150 °C, producing reducing sugar of 97.06 g /L.

GRAPHICAL ABSTRACT

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

T Mathimani and A Pugazhendhi. Utilization of algae for biofuel, bio-products and bio-remediation. Biocatalysis Agr. Biotechnol. 2019; 17, 326-30.

T Yu-Qing, K Mahmood, R Shehzadi and MF Ashraf. Ulva lactuca and its polysaccharides: Food and biomedical aspects. J. Biol. Agr. Healthc. 2016; 6, 140-51.

RRL Supit, IYM Laa and JN Sunbanu. Analisis kepadatan makroalga di perairan pantai desa bolok. Jurnal Bahari Papadak 2021; 2, 105-12.

P Jeong-Hoon, H Ji-Yeon, HC Jang, SG Oh, K Sang-Hyoun, Y Jeong-Jun and YJ Kim. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Tech. 2012; 108, 83-8.

NKA Dewi, A Hartiati and BA Harsojuwono. Pengaruh suhu dan jenis asam pada hidrolisis pati ubi talas (Colocasia esculenta L. schott) terhadap karakteristik glukosa. Jurnal Rekayasa Dan Manajemen Agroindustri 2018; 6, 307.

SMD Kolo, D Wahyuningrum and R Hertadi. The effects of microwave-assisted pretreatment and cofermentation on bioethanol production from elephant grass. Int. J. Microbiol. 2020; 2020, 6562730.

SMD Kolo, J Presson and P Amfotis. Produksi bioetanol sebagai energi terbarukan dari rumput laut ulva reticulata asal pulau timor. ALCHEMY Jurnal Penelitian Kimia 2021; 17, 159.

SHM Azhar, R Abdulla, SA Jambo, H Marbawi, JA Gansau, AAM Faik and KF Rodrigues. Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 2017; 10, 52-61.

M Samsuri, M Gozan, R Mardias, M Baiquni, H Hermansyah, A Wijanarko, B Prasetya and M Nasikin. Pemanfaatan sellulosa bagas untuk produksi ethanol melalui sakarifikasi dan fermentasi serentak dengan enzim xylanase. MAKARA Tech. 2007; 11, 17-24.

KS Yadav, S Naseeruddin, GS Prashanthi, L Sateesh and LV Rao. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresource Tech. 2011; 102, 6473-8.

SMD Kolo, NM Obenu, L Kefi and FF Fuel. Optimasi proses hidrolisis rumput laut Ulva reticulata dengan pelarut HNO3 untuk produksi bioetanol. Jurnal Riset Kimia 2023; 14, 12-23.

SYM Nggai, SMD Kolo and Y Sine. Pengaruh perlakuan awal hidrolisis ampas sorgum (sorghum bicolor L.) terhadap fermentasi untuk produksi bioetanol sebagai energi terbarukan. ALCHEMY J. Chem. 2022; 10, 33-40.

SMD Kolo, NM Obenu and MYC Tuas. Pengaruh pretreatment makroalga Ulva reticulata menggunakan microwave irradiation untuk produksi bioetanol. Jurnal Kimia 2022; 16, 212.

H Wang, ML Maxim, G Gurau and RD Rogers. Microwave-assisted dissolution and delignification of wood in 1-ethyl-3-methylimidazolium acetate. Bioresource Tech. 2013; 136, 739-42.

FS Galung. Analisis kandungan karbohidrat (glukosa) pada salak golla - golla. J. Agr. Sci. 2021; 5, 10-4.

CK Phwan, KW Chew, AH Sebayang, HC Ong, TC Ling, MA Malek, YC Ho and PL Show. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol. Biofuels 2019; 12, 191.

F Menegazzo, E Ghedini and M Signoretto. 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules 2018; 23, 2201.

J Jayus, IV Noorvita and N Nurhayati. Produksi bioetanol oleh saccharomyces cerevisiae FNCC 3210 pada media molases dengan kecepatan agitasi dan aerasi yang berbeda. Jurnal Agroteknologi 2016; 10, 184-92.

SMD Kolo, L Pardosi and AE Baru. The effect of hydrolysis time using microwave on bioethanol production from sorghum waste (sorghum bicolor L.). Jurnal Ilmiah Berkala Sains Dan Terapan Kimia 2022; 16, 28-38.

DF Solikha. Analisis kandungan p-xilena pada pertamax dan pertamax plus dengan teknik kromatografi gas (GC-PU 4600) menggunakan standar internal. Jurnal Ilmiah Indonesia 2017; 2, 1-15.

ES Ningsih. Optimasi Konsentrasi Molase dan pH Terhadap Produksi Etanol Hasil Fermentasi pada Suhu 28ºC oleh Saccharomyces cerevisiae, Available at: https://123dok.com/document/y93268jy-optimasi-konsentrasi-terhadap-produksi-fermentasi-saccharomyces-cerevisiae-repository.html, accessed February 2009.

Y Hendrawan, SH Sumarlan and CP Rani. Pengaruh ph dan suhu fermentasi terhadap produksi etanol hasil hidrolisis jerami padi. Jurnal Keteknikan Pertanian Tropis Dan Biosistem 2017; 5, 1-8.

AC Rinastiti, DI Permata, B Palupi, Z Mumtazah, MF Rizkiana and A Rahmawati. Effect of time, pH, and yeast concentration on bioethanol levels in the Ulva sp. fermentation process. J. Biobased Chemicals 2022; 2, 61-77.

JS Siregar, A Ahmad and SZ Amraini. Effect of time fermentation and saccharomyces cerevisiae concentration for bioethanol production from empty fruit bunch. J. Phys. Conf. Ser. 2019; 1351, 012104.

N Azizah, AN Al-Barrii, S Mulyani. Pengaruh Lama Fermentasi terhadap Kadar Alkohol, pH, dan Produksi Gas pada Proses Fermentasi Bioetanol dari Whey dengan Substitusi Kulit Nanas. Jurnal Aplikasi Teknologi Pangan 2012; 1, 72-7.

Arifwan, Erwin and R Kartika. Pembuatan bioetanol dari singkong karet (manihot glaziovii muell) dengan hidrolisis enzimatik dan difermentasi menggunakan saccharomyces cerevisiae. Jurnal Atomik 2016; 1, 10-2.

GI Danmaliki, AM Muhammad, AA Shamsuddeen and BJ Usman. Bioethanol production from banana peels. IOSR J. Environ. Sci. Toxicol. Food Tech. 2016; 10, 56-62.

Downloads

Published

2024-02-25

How to Cite

Kolo, S. M. D. ., Obenu, N. M. ., Bria, P. M. ., Klau, W. H. ., Abi, M. O. ., Tae, J. S. ., & Wahyuningrum, D. . (2024). The Effect of Fermentation Time, pH and Saccharomyces Cerevisiae Concentration for Bioethanol Production from Ulva Reticulata Macroalgae. Trends in Sciences, 21(5), 7484. https://doi.org/10.48048/tis.2024.7484