Antibacterial Ability of Seaweed Endophytic Bacteria (Turbinaria ornata, Sargassum crassifolium, and Sargassum polycystum) Against Skin Disease Agents

Authors

  • Dony Bayu Putra Pamungkas Department of Biology, Faculty of Biology, Jenderal Soedirman University, Central Java, Indonesia
  • Wilis Ari Setyati Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Central Java, Indonesia
  • Dini Ryandini Department of Biology, Faculty of Biology, Jenderal Soedirman University, Central Java, Indonesia

DOI:

https://doi.org/10.48048/tis.2024.7282

Keywords:

Antibacterial, Endophytic bacteria, Seaweed, Skin disease

Abstract

Bioactive substances that can prevent the growth of pathogenic germs can be produced by endophytic bacteria This study aims to identify seaweed endophytic bacteria (Turbinaria ornata, Sargassum crassifolium, Sargassum polycystum) and their potential antibacterial activity against skin disease agents (Staphylococcus aureus and Staphylococcus epidermidis). In February 2023 (the rainy season), seaweed was harvested from the waters off Panjang Island in Jepara Regency, Central Java, Indonesia. Endophytic bacterial isolates that had been effectively isolated and purified were directly tested for antibacterial activity. Three isolates with the best antibacterial activity were extracted using the ethyl acetate solvent. The extract samples will be put through additional antibacterial testing using the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and paper disc diffusion procedures. Using the thin layer chromatography (TLC), the class of chemical components in the extract was determined. A molecular technique based on the 16s rRNA gene (1,400 bp) was used to identify endophytic bacterial isolates. Three species of seaweed yielded 25 isolates of endophytic bacteria: 11 from T. ornata, 7 from S. crassifolium, and 7 from S. polycystum. To.09.pp, To.10.pp, and Sc.06.pp were the 3 isolates with the highest antibacterial activity in the direct challenge test. Zone of inhibition results from subsequent antibacterial testing using paper disc diffusion ranged from medium to very strong intensity. To.10.pp sample’s MIC test yielded the best results, with S. aureus and S. epidermidis concentrations of 937.5 and 1,875 µg/mL, respectively. MBC test yielded the highest findings, with S. aureus and S. epidermidis concentrations of 1,875 and 1,875 µg/mL, respectively. The To.10.pp sample yielded terpenoids, alkaloids, and flavonoids, according to TLC analysis of chemical constituent groups. Acinetobacter indicus strain 80-1-2 and Vibrio harveyi strain B14-1 were identified as potential endophytic bacteria from T. ornata, and Acinetobacter indicus strain 80-1-2 from S. crassifolium.

HIGHLIGHTS

  • Endophytic seaweed Turbinaria ornata, Sargassum crassifolium, and Sargassum polycystum showed antibacterial activity against Staphylococcus aureus ATCC 29213 and Staphylococcus epidermidis FNCC 0048
  • Acinetobacter indicus strain 80-1-2, and Vibrio harveyi strain B14-1 were all successfully identified by molecular analysis as potential endophytic bacteria
  • Identification of compounds using Thin Layer Chromatography (TLC) showed the presence of terpenoids, alkaloids, and flavonoids


GRAPHICAL ABSTRACT

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

HK Kang, CH Seoand and Y Park. Marine peptides and their anti-infective activities. Mar Drugs 2015; 13, 618-54.

J Hollants, OLeroux, F Leliaert, H Decleyre, OD Clerck and A Willems. Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed bryopsis (Bryopsidales, Chlorophyta). PLos One 2011; 6, e26458.

AF Siregar, A Sabdono and D Pringgenies. Antibacterial potential of seaweed extract against bacterial skin diseases on Pseudomonas aeruginosa, Staphylococcus epidermidis, and Micrococcus luteus. J. Mar. Res. 2012; 1, 152-60.

WA Setyati, R Pramesti, AB Susanto, AS Chrisna and M Zainuddin. In vitro antibacterial study and spectral analysis of brown seaweed Sargassum crassifolium extract from Karimunjawa Islands, Jepara. IOP Conf. Ser. Earth Environ. Sci. 2020; 530, 012028.

B Andryukov, V Mikhailov and N Besednova. The biotechnological potential of secondary metabolites from marine bacteria. J. Mar. Sci. Eng. 2019; 7, 176.

A Tourneroche, R Lami, C Hubas, E Blanchet, M Vallet, K Escoubeyrou and S Prado. Bacterial-fungal interactions in the kelp endomicrobiota drive autoinducer-2 quorum sensing. Front. Microbiol. 2019; 10, 1693.

CG Ren, ZY Liu, XL Wang and S Qin. The seaweed holobiont: From microecology to biotechnological applications. Microb. Biotechnol. 2022; 15, 738-54.

L Feng, Y Qiao, C Xiao and D Chen. Interaction between live seaweed and various Vibrio species by co-culture: Antibacterial activity and seaweed microenvironment. Algal Res. 2022; 65, 102741.

A Susanto, GW Santosa, A Djunaedi, D Pringgenies and D Ariyanto. The impact of mixed feed of seaweed Gracilaria sp. and transfer factor formula as immunostimulant on the immune response of Nile tilapia (Oreochromis niloticus). AACL Bioflux 2023; 16, 242-51.

RP Singh and CRK Reddy. Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiol. Ecol. 2014; 88, 213-30.

W Wu, W Chen, S Liu, J Wu, Y Zhu, L Qin and B Zhu. Beneficial relationships between endophytic bacteria and medicinal plants. Front. Plant Sci. 2021; 12, 646146.

N Anjum and R Chandra. Endophytic bacteria: Optimization of isolation procedure from various medicinal plants and their preliminary characterization. Asian J. Pharmaceut. Clin. Res. 2015; 8, 233-8.

G Strobel and B Daisy. Effect of eimeria tenella infection on the production of Salmonella enteritidis-contaminated eggs and susceptibility of laying hens to S. enteritidis infection. Microbiol. Mol. Biol. Rev. 2003; 67, 491-502.

R Saxena, P Mittal, C Clavaud, DB Dhakan, P Hegde, MM Veeranagaiah, S Saha, L Souverain, N Roy, L Breton, N Misra and VK Sharma. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health. Front. Cell. Infect. Microbiol. 2018; 8, 346.

WA Setyati, AB Susanto, DBP Pamungkas, DB Makrima and JL Senduk. Isolation and identification of seaweed-associated bacteria and their antibacterial activity against skin disease agents. Trends Sci. 2023; 20, 6517.

P Skórczewski, Z Mudryk, J Gackowska and P Perlinski. Abundance and distribution of fecal indicator bacteria in recreational beach sand in the southern Baltic Sea. Revista Biología Marina y Oceanografía 2012; 47, 503-12.

S Ravikumar, N Thajuddin, P Suganthi, SJ Lnbaneson and T Vinodkumar. Bioactive potential of seagrass bacteria against human bacterial pathogens. J. Environ. Biol. 2010; 31, 387-9.

Sujuliyani, EA Thaib, N Indriati and M Liananda. Antibacterial activity of the symbiotic bacteria of green algae Caulerpa racemosa from Pulau Lima Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019; 278, 012075.

H Sueke, S Kaye, T Neal, C Murphy, A Hall, D Whittaker, S Tuft and C Parry. Minimum inhibitory concentrations of standard and novel antimicrobials for isolates from bacterial keratitis. Investig. Ophthalmol. Vis. Sci. 2010; 51, 2519-24.

B Kowalska-Krochmal and R Dudek-Wicher. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021; 10, 165.

I Hendiani, A Susanto, DN Carolina, R Ibrahim and FF Balatif. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of mangosteen (Garcinia mangostana Linn.) rind extract against Aggregatibacter actinomycetemcomitans. Padjadjaran J. Dent. 2020; 32, 27366.

AA Bele and A Khale. An overview on thin layer chromatography. Int. J. Pharmaceut. Sci. Res. 2011; 2, 256.

JB Harborne, I Sudiro, K Padmawinata and S Niksolihin. Metode fitokimia: Penuntun cara modern menganalisis tumbuhan. Penerbit ITB, Bandung, Indonesia, 1996.

NM Saptarini, IE Herawati and UY Permatasari. Total flavonoids content in acidified extract of flowers and leaves of gardenia (Gardenia jasminoides Ellis). Asian J. Pharmaceut. Clin. Res. 2016; 9, 213-5.

MSE Hanani. Analisis fitokimia. Penerbit Buku Kedokteran EGC, Jakarta, Indonesia, 2015.

UM Safira, FH Pasaribu and M Bintang. Isolasi bakteri endofit dari tanaman sirih hijau (Piper betle L.) dan potensinya sebagai penghasil senyawa antibakteri. Curr. Biochem. 2017; 1, 51-7.

L Palkova, A Tomova, G Repiska, K Babinska, B Bokor, I Mikula, G Minarik, Dostatnikova and K Soltys. Evaluation of 16S rRNA primer sets for characterisation of microbiota in paediatric patients with autism spectrum disorder. Sci. Rep. 2021; 11, 6781.

T Handayani. Mengenal makroalga turbinaria dan pemanfaatannya. Oseana 2018; 43, 28-39.

Triastinurmiatiningsih, Ismanto and Ertina. Variasi morfologi dan anatomi Sargassum spp. di Pantai Bayah Banten. Jurnal Ilmiah Ilmu Dasar Lingkungan Hidup 2011; 11, 1-10.

DS Widyartini, P Widodo and AB Susanto. Thallus variation of Sargassum polycystum from Central Java, Indonesia. Biodiversity J. 2017; 18, 1004-11.

RI Putranti. 2014, Skrining fitokimia dan aktivitas antioksidan ekstrak rumput laut Sargassum duplicatum dan Turbinaria ornata dari Jepara. Ph. D. Dissertation. Universitas Diponegoro, Central Java, Indonesian.

SR Wulandari and S Hutabarat. Pengaruh arus dan substrat terhadap distribusi kerapatan rumput laut di perairan Pulau Panjang sebelah barat dan selatan. Manag. Aquat. Res. J. 2015; 4, 91-8.

WA Setyati, R Pramesti, AB Susanto, AS Chrisna and M Zainuddin. In vitro antibacterial study and spectral analysis of brown seaweed Sargassum crassifolium extract from Karimunjawa Islands, Jepara. IOP Conf. Ser. Earth Environ. Sci. 2020; 530, 012028.

WW David and TR Stout. Disc plate method of microbiological antibiotic assay. Appl. Microbiol. 1971; 22, 659-65.

G Donadio, F Mensitieri, V Santoro, V Parisi, ML Bellone, ND Tommasi, V Izzo and FD Piaz. Interactions with microbial proteins driving the antibacterial activity of flavonoids. Pharmaceutics 2021; 13, 660.

NH Zaidun, ZC Thent and AA Latiff. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci. 2018; 208, 111-22.

I Górniak, R Bartoszewski and J Króliczewski. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Rev. 2019; 18, 241-72.

M Ashrafizadeh, H Rafiei, R Mohammadinejad, T Farkhondeh and S Samarghandian. Anti-tumor activity of resveratrol against gastric cancer: A review of recent advances with an emphasis on molecular pathways. Canc. Cell Int. 2021; 21, 66.

T Noori, AR Dehpour, A Sureda, E Sobarzo-Sanchez and S Shirooie. Role of natural products for the treatment of alzheimer’s disease. Eur. J. Pharmacol. 2021; 898, 173974.

G Li, K Ding, Y Qiao, L Zhang, L Zheng, T Pan and L Zhang. Flavonoids regulate inflammation and oxidative stress in cancer. Molecules 2020; 25, 5628.

D Pringgenies, WA Setyati, A Djunaedi, S Rudiyanti and D Ariyanto. Exploration of antimicrobial potency of mangrove symbiont against multi-drug resistant bacteria. Jurnal Ilmiah Perikanan Kelautan/ Sci J Fish Mar 2021; 13, 102-12.

Y Yan, X Li, C Zhang, L Lv, B Gao and M Li. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 2021; 10, 318.

M Fan, S Yuan, L Li, J Zheng, D Zhao, C Wang and J Liu. Application of terpenoid compounds in food and pharmaceutical products. Fermentation 2023; 9, 119.

W Yang, X Chen, Y Li, S Guo, Z Wang and X Yu. Advances in pharmacological activities of terpenoids. Nat. Prod. Comm. 2020; 15, 1-13.

T Robinson. Kandungan organik tumbuhan tingkat tinggi. ITB, Bandung, Indonesia, 1995.

AP Karlapudi, TC Venkateswarulu, K Srirama, RK Kota, I Mikkili and VP Kodali. Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter M6 strain. J. King Saud Univ. Sci. 2020; 32, 223-7.

K Anjum, S Kaleem, W Yi, G Zheng, X Lian and Z Zhang. Novel antimicrobial indolepyrazines A and B from the marine-associated Acinetobacter sp. ZZ1275. Mar. Drugs 2019; 17, 89.

GM Ward, JP Faisan, EJ Cottier-Cook, C Gachon, AQL Hurtado, PE Lim, I Matoju, FE Msuya, D Bass and J Brodie. A review of reported seaweed diseases and pests in aquaculture in Asia. J. World Aquaculture Soc. 2020; 51, 815-28.

D Pringgenies, WA Setyati, F Feliatra and D Ariyanto. The antibacterial and antifungal potential of marine natural ingredients from the symbiont bacteria of mangrove. Global J. Environ. Sci. Manag. 2023; 9, 819-32.

GW Santosa, A Djunaedi, A Susanto, D Pringgenies and D Ariyanto. Characteristics of bioactive compounds of Holothuria atra (Jaeger, 1833) associated bacteria. AACL Bioflux 2020; 13, 2161-9.

F Goecke, A Labes, J Wiese and JF Imhoff. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Progr. 2010; 409, 267-300.

D Pringgenies, EI Retnowati, D Ariyanto, MAS Viharyo and R Susilowati. Symbiotic microbes from various seaweeds with antimicrobial and fermentative properties. AACL Bioflux 2020; 13, 2211-7.

Downloads

Published

2023-12-25

How to Cite

Pamungkas, D. B. P., Setyati, W. A., & Ryandini, D. . (2023). Antibacterial Ability of Seaweed Endophytic Bacteria (Turbinaria ornata, Sargassum crassifolium, and Sargassum polycystum) Against Skin Disease Agents. Trends in Sciences, 21(2), 7282. https://doi.org/10.48048/tis.2024.7282