A Techno-Economic Analysis of Utilization and Development Activated Carbon as Biomass-based Electrodes for Supercapacitor Device

Authors

  • Rika Taslim Department of Industrial Engineering, State Islamic University Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
  • Farhan Dio Pahlevi Department of Industrial Engineering, State Islamic University Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
  • Suedi Department of Industrial Engineering, State Islamic University Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
  • Apriwandi Apriwandi Energy Research and Nano Carbon Center, Pekanbaru 28293, Indonesia
  • Harpito Department of Industrial Engineering, State Islamic University Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
  • Muhammad Ihsan Hamdy Department of Industrial Engineering, State Islamic University Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
  • Ismu Kusumanto Department of Industrial Engineering, State Islamic University Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
  • Merry Siska Department of Industrial Engineering, State Islamic University Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
  • Erman Taer Department of Physics, Faculty of Mathematic and Natural Sciences, University of Riau, Pekanbaru 28293, Indonesia

DOI:

https://doi.org/10.48048/tis.2023.6398

Keywords:

Activated carbon, Mission grass, Supercapacitor; Techno-economy

Abstract

Biomass-based activated carbon (AC) has been widely used as a supercapacitor electrode. Although there have been many studies that explain the potential of biomass as a material to produce AC as supercapacitor electrodes in performance through specific capacitance values and energy values, there have been no studies that discuss their potential from an economic point of view. Therefore, this study aims to use mission grass as a supercapacitor electrode to produce AC based on techno-economic aspects. There are several calculations, including the cost of production, break-even point (BEP), payback period (PP), net present value (NPV), and sensitivity analysis. Furthermore, it is necessary to include an estimate of cost component data to calculate the small-scale production target of 5,472 units/year. The results showed that cost of production of USD 1.83/unit with a selling price of USD 2.37, BEP at 3,538 units earned a gross profit, PP, and a positive NPV of USD 8,380, 5 years, and USD 8,768, respectively. According to sensitivity analysis, changes in selling price to BEP are considered the most sensitive. These implies that using mission grass as a supercapacitor electrode is beneficial.

HIGHLIGHTS

  • Development mission grass as a supercapacitor electrode is beneficial
  • Produce activated carbon in small-scale production up to 5,472 units/year
  • The payback period obtained in 5 years, NPV positive of USD 8,768 and earned gross profit of USD 8,380
  • Selling price of the supercapacitor biomass-based cheaper than other


GRAPHICAL ABSTRACT

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

H Marsh and F Rodríguez-Reinoso. Activated carbon. Elsevier, Amsterdam, Netherlands, 2006.

S Misfadhila, Z Azizah, Rusdi and CDP Chaniago. Pengaplikasian Cangkang Telur Dan Karbon Aktif Sebagai Adsorben Logam Timbal (in Bahasa Indonesia). Jurnal Farmasi Higea 2018; 10, 126-33.

S Ahmed, M Parvaz, R Johari and M Rafat. Studies on activated carbon derived from neem (azadirachta indica) bio-waste, and its application as supercapacitor electrode. Mater. Res. Express 2018; 5, 045601.

ED Pratiwi, S Haryati and N Syarif. Pengaruh Variasi Binder, Elektrolit dan Pemakaian Emulsi terhadap Kinerja Baterai Litium Ion Berbasis Karbon Batang Kangkung Air (Ipomoea Aquatica). Syntax Literate (in Bahasa Indonesia). Jurnal Ilmiah Indonesia 2022; 7, 2563-77.

S Haryati, N Syarif and S Iryani. Sosialisasi Ilmu Pengetahuan Kepada Siswa Menengah Atas Negeri 2 Unggulan Sekayu Tentang Tanaman Apu-Apu Sebagai Bahan Baku Baterai Dan Kapasito r (in Bahasa Indonesia). Jurnal Pengabdian Community 2022; 4, 75-7.

R Taslim, MI Hamdy, M Siska, E Taer, DA Yusra, Apriwandi, M Jelita, S Afriani and N Gusnita. Interconnected activated carbon nanofiber derived from mission grass for electrode materials of supercapacitor. Adv. Nat. Sci. Nanosci. Nanotechnol. 2021; 12, 35013.

GA Yakaboylu, C Jiang, T Yumak, JW Zondlo, J Wang and EM Sabolsky. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors. Renew. Energ. 2021; 163, 276-87.

C Quan, R Su and N Gao. Preparation of activated biomass carbon from pine sawdust for supercapacitor and CO2 capture. Int. J. Energ. Res. 2020; 44, 4335-51.

O Boujibar, A Ghosh, O Achak, T Chafik and F Ghamouss. A high energy storage supercapacitor based on nanoporous activated carbon electrode made from Argan shells with excellent ion transport in aqueous and non-aqueous electrolytes. J. Energ. Storage 2019; 26, 100958.

CK Roy, SS Shah, AH Reaz, S Sultana, AN Chowdhury, SH Firoz, H Zahir, MAA Qasem and A Aziz. Preparation of hierarchical porous activated carbon from banana leaves for high-performance supercapacitor: Effect of type of electrolytes on performance. Chem. Asian J. 2021; 16, 296-308.

Y Gong, D Li, C Luo, Q Fu and C Pan. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 2017; 19, 4132-40.

J Sodtipinta, T Amornsakchai and P Pakawatpanurut. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017; 8, 035017.

E Taer, A Apriwandi, N Nursyafni and R Taslim. Averrhoa bilimbi leaves-derived oxygen doped 3D-linked hierarchical porous carbon as high-quality electrode material for symmetric supercapacitor. J. Energ. Storage 2022; 52, 104911.

RS Kempegowda, KQ Tran and Ø Skreiberg. Techno-economic assessment of integrated hydrochar and high-grade activated carbon production for electricity generation and storage. Energ. Proc. 2017; 120, 341-8.

WY Hong. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Tech. 2022; 3, 100044.

L Liu, H Qian, L Mu, J Wu, X Feng, X Lu and J Zhu. Techno-economic analysis of biomass processing with dual outputs of energy and activated carbon. Bioresour. Tech. 2021; 319, 124108.

F Pruvost, S Cloete, JH Cloete, C Dhoke and A Zaabout. Techno-economic assessment of natural gas pyrolysis in molten salts. Energ. Convers. Manag. 2022; 253, 115187.

CAD Pozo, S Cloete and ÁJ Álvaro. Techno-economic assessment of long-term methanol production from natural gas and renewables. Energ. Convers. Manag. 2022; 266, 115785.

P Srinophakun, A Thanapimmetha, TR Srinophakun, P Parakulsuksatid, C Sakdaronnarong, M Vilaipan and M Saisriyoo. Techno-economic analysis for bioethanol plant with multi lignocellulosic feedstocks. Int. J. Renew. Energ. Dev. 2020; 9, 319-28.

FA Pratama and F Marshela. Sistem Penentuan Harga Pokok Produksi Melalui Pendekatan Variable Costing Pada Mega Aluminium Cirebon (in Bahasa Indonesia). Jurnal Teknologi Informasi dan Komunikasi 2018; 13, 96-113.

IA Dewi, U Efendi, S Wijana and D Novanda. The financial feasibility study of nypa punch drink production on small and medium sized enterprise (in Bahasa Indonesia). Jurnal Teknologi Pertanian 2019; 20, 25-32.

NLGP Suwirmayanti and PP Yudiastra. Penerapan metode activity based costing untuk penentuan harga pokok produksi. Jurnal Sistem dan Informatika 2018; 12, 34-44.

S Juriah and R Juniawaty. Break even point analysis on sabana fried chicken Jatirahayu outlet, Bekasi (in Bahasa Indonesia). Literatus 2020; 2, 141-8.

Rita Feni, F Mufriantie and I Saputra. Analisis Break Even Point dan Return of Investment pada Usaha Ikan Asin di Kelurahan Sumber Jaya Kecamatan Kampung Melayu Kota Bengkulu (in Bahasa Indonesia). Jurnal Agribis 2020; 13, 1-9.

IA Hasugian, F Ingrid and K Wardana. Analisis kelayakan dan sensitivitas: Studi kasus ukm mochi kecamatan Medan Selayang (in Bahasa Indonesia). Buletin Teknik 2020; 15, 159-64.

M Hudori. Perbandingan Break Even Point (BEP) Antara Rencana dan Realisasi Project Customer’s Price dengan Analisis Sensitivitas di Perusahaan Manufaktur (in Bahasa Indonesia). Ind. Eng. J. 2018; 7, 36-42.

Downloads

Published

2023-02-26

How to Cite

Taslim, R., Pahlevi, F. D. ., Suedi, S., Apriwandi, A., Harpito, H., Hamdy, M. I. ., Kusumanto, I., Siska, M. ., & Taer, E. (2023). A Techno-Economic Analysis of Utilization and Development Activated Carbon as Biomass-based Electrodes for Supercapacitor Device . Trends in Sciences, 20(5), 6398. https://doi.org/10.48048/tis.2023.6398