Stability of Fe(III) and Sn(IV) Metalloporphyrins Adsorbed on Cation-Exchanged Montmorillonite

Authors

  • Jasim Hassen College of Pharmacy, University of Anbar, Ramadi, Iraq
  • Jack Silver Wolfson Centre for Material Processing, Brunel University, London, United Kingdom

DOI:

https://doi.org/10.48048/tis.2022.3426

Keywords:

Montmorillonite, Clay, Demetallation, Dimeric, Monomeric

Abstract

The iron(III)tetraphenylporphyrin chloride Fe(III)TPPCl, iron(III)tetra-naphthylporphyrin Fe(III)TNPCl, μ-oxo-bis[tetraphenylporphyriniron(III)] [(Fe(III)TPP)2O], μ-oxo-bis[tetranaphthylporphyriniron(III)] [(Fe(III)TNP)2O], tin(IV)tetraphenylporphyrin chloride Sn(IV)TPPCl2 and tin(IV)tetra-naphthylporphyrin Sn(IV)TNPCl2 complexes were all found to be adsorbed onto the montmorillonite MMT clay without demetallation. The evidence from the visible absorption and diffuse reflectance spectra all showed that the species present on the montmorillonite are the metallated form. Also the evidence from Mossbauer spectroscopy confirm these findings. The only process that occurs is that the dimeric form of the iron complexes underwent transformation to the monomeric form. The clay-complex systems were characterized using visible absorption spectra, diffuse reflectance spectra, X-ray diffraction, Mossbauer spectra and Electron microscopy.

HIGHLIGHTS

  • Fe(III)TPPCl, Fe(III)TNPCl, Sn(IV)TPPCl2, and Sn(IV)TNPCl2 porphyrin complexes adsorbed onto the montmorillonite clay without demetallation
  • The dimeric forms of iron porphyrin complexes [(Fe(III)TPP)2O] and [(Fe(III)TNP)2O are converted to the monomeric form when adsorbed on montmorillonite clay
  • The weak acidity of montmorillonite clay does not have the ability to cause demetallation of the metallo complexes of porphyrin

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

DR Dkosiur. Porphyrin adsorbed by minerals. Clays Clay Miner. 1977; 25, 365-71.

S Takagi, S Konno, Y Ishida, A Ceklovsky, D Masui, T Shimada, H Tachibana and H Inoue. A unique flattening effect of clay on the photochemical properties of metalloporphyrins. Clay Sci. 2010; 14, 235-39.

J Hassen and J Silver. Montmorillonite surface as a catalyst for the formation of SAT metal tetra(p-sulphophenyl)porphyrins. Jurnal Teknologi 2020; 82, 1-9.

W Auwarter, D Ecija, F Klappenberger and JV Barth. Porphyrins at interfaces. Nat. Chem. 2015; 7, 105-20.

H Nishina, S Hoshino, Y Ohtani, T Ishida, T Shimada and S Takagi. Anisotropic energy transfer in a clay-porphyrin layered system with environment-responsiveness. Phys. Chem. Chem. Phys. 2020, 22, 14261-7.

KA Carrado and SR Wasserman. Stability of Cu(II)- and Fe(III)-porphyrins on montmorillonite clay: An x-ray absorption study. Chem. Mater. 1996; 8, 219-25.

Y Ishida, T Shimada, D Masui, H Tachibana, H Inoue and S Takagi. Efficient excited energy transfer reaction in clay/porphyrin complex toward an artificial light-harvesting system. J. Am. Chem. Soc. 2011; 133, 14280-6.

Y Ishida, D Masui, H Tachibana, H Inoue, T Shimada and S Takagi. Controlling the microadsorption structure of porphyrin dye assembly on clay surfaces using the “size-matching rule” for constructing an efficient energy transfer system. ACS Appl. Mater. Interfaces 2012; 4, 811-6.

T Egawa, H Watanabe, T Fujimura, Y Ishida, M Yamato, D Masui, T Shimada, T Hiroshi, H Yoshida, H Inoue and S Takagi. Novel methodology to control the adsorption structure of cationic porphyrins on the clay surface using the “size-matching rule”. Langmuir 2011; 27, 10722-9.

Y Ishida, T Shimada, H Tachibana, H Inoue and S Takagi. Regulation of the collisional self-quenching of fluorescence in clay/porphyrin complex by strong host-guest interaction. J. Phys. Chem. A 2012; 116, 12065-72.

S Takagi, M Eguchi, DA Tryk and H Inoue. Light-harvesting energy transfer and subsequent electron transfer of cationic porphyrin complexes on clay surfaces. Langmuir. 2006; 22, 1406-8.

T Fujimura, T Shimada, S Hamatani, S Onodera, R Sasai, H Inoue and S Takagi. High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir. 2013; 29, 5060-65.

PM Dias, DLA de Faria and VRL Constantino. Clay-porphyrin systems: Spectroscopic evidence of TMPyP protonation, non-planar distortion and Meso substituent rotation. Clays Clay Miner. 2005; 53, 361-71.

F Bergaya and HV Damme. Stability of metalloporphyrins adsorbed on clays: A comparative study. Geochim. Cosmochim. Acta 1982; 46, 349-60.

HV Damme, M Crespin, F Obrecht, MI Cruz and JJ Fripiat. Acid-base and complexation behavior of porphyrins on the intracrystal surface of swelling clays: Meso-tetraphenylporphyrin and meso- tetra(4-pyridyl)porphyrin on montmorillonites. J. Colloid Interface Sci. 1978; 66, 43-54.

S Abdo, MI Cruz and JJ Fripiat. Metallation-demetallation reaction of tin tetra(4-pyridyl) porphyrin in Na-hectorite. Clays Clay Miner. 1980; 28, 125-9.

GD Dorough, JR Miller and FM Huennekens. Spectra of the metallo-derivatives of α, β, γ, δ- tetraphenylporphine J. Am. Chem. Soc. 1951; 73, 4315-20.

EB Fleischer, JM Palmer, TS Srivastava and A Chatterjee. Thermodynamic and kinetic properties of an iron-porphyrin system. J. Am. Chem. Soc. 1971; 93, 3162-7.

JW Buchler. Static coordination chemistry of metalloporphyrins. In: KM Smith (Ed.). Porphyrins and metalloporphyrins. Elsevier, New York, 1975, p. 354-88.

H Benesi. Acidity of catalyst surfaces. I. acid strength from colors of adsorbed indicators. J. Am. Chem. Soc. 1956; 78, 5490-4.

HA Benesi. Acidity of catalyst surfaces. II. amine titration using Hammett indicators. J. Phys. Chem. 1957; 61, 970-3.

C Walling. The acid strength of surfaces. J. Am. Chem. Soc. 1950; 72, 1164-8.

MA Torrens, DK Straub and LM Epstein. Mossbauer studies on hemin derivatives of α, β, γ, δ-tetraarylporphines. J. Am. Chem. Soc. 1972; 94, 4162-7.

C Maricondi, OK Straub and LM Epstein. Moessbauer studies on hemin derivatives of α, β, γ, δ-tetraphenylporphine. J. Am. Chem. Soc. 1972; 94, 4157-9.

NWG Debye and AD Adler. Tin-119m Mossbauer spectra of para-substituted dichlorotetraphenylporphinatotin(IV) complexes. Inorg. Chem. 1974; 13, 3037-9.

VV Krupskaya, SV Zakusin, EA Tyupina, OV Dorzhieva, AP Zhukhlistov, PE Belousov and MN Timofeeva. Experimental study of montmorillonite structure and transformation of its properties under treatment with inorganic acid solutions. Minerals 2017; 7, 49-63.

Downloads

Published

2022-03-27

How to Cite

Hassen, J. ., & Silver, J. . (2022). Stability of Fe(III) and Sn(IV) Metalloporphyrins Adsorbed on Cation-Exchanged Montmorillonite. Trends in Sciences, 19(8), 3426. https://doi.org/10.48048/tis.2022.3426