Hierarchical Clustering on Principal Components of Microsatellite Frequency Allele Data from Indonesian Buffaloes

Authors

  • Ferdy Saputra Indonesian Research Institute for Animal Production, Bogor, Indonesia
  • Anneke Anggraeni Indonesian Research Institute for Animal Production, Bogor, Indonesia
  • Cece Sumantri Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia

DOI:

https://doi.org/10.48048/tis.2022.2045

Keywords:

Multivariate, Microsatellite, Allele frequency, Indonesian buffaloes

Abstract

Buffalo is a livestock that is used for meat, milk, draught animals, and religious ceremonies in Indonesia. Buffalo genetic information has not been obtained optimally for the development of buffalo breeding programs. Allele frequency is essential information to determine the genetic diversity of a population. This study investigates the use of one of the multivariate analyzes, hierarchical clustering on principal component (HCPC). The data used were microsatellite allele frequency data of 199 swamp buffaloes and 12 river buffaloes in 8 population (7 populations swamp buffalo and 1 population of river buffalo). Furthermore, the data is processed using factoextra and FactoMineR package in R 4.0.0. The results found that the ILSTS61 and ILSTS17 loci could be used as genetic markers to determine the genetic relationship of Indonesian buffalo. From the study, it is concluded that the HCPC method with allele frequency data can be used to analyze genetic relationships in Indonesian buffalo. The PC (Principle Component) value can describe which loci determines the genetic relationship.

HIGHLIGHTS

  • Allele frequency data can be used to determine genetic relationships among population
  • Principle component value can determine which the loci is influential in determining a genetic relationship
  • Hierarchical Clustering on Principal Components can be used to analyze genetic relationships


GRAPHICAL ABSTRACT

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

S Shamsalddini, MR Mohammadabadi and AK Esmailizadeh. Polymorphism of the prolactin gene and its effect on fiber traits in goat. Russ. J. Genet. 2016; 52, 405-8.

P Zamani, M Akhondi, MR Mohammadabadi, AA Saki, A Ershadi, MH Banabazi and AR Abdolmohammadi. Genetic variation of Mehraban sheep using two intersimple sequence repeat (ISSR) markers. Afr. J. Biotechnol. 2011; 10, 1812-7.

HK Koopaei, MRM Abadi, SA Mahyari, AR Tarang, P Potki and A Esmailizadeh. Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population. Anim. Sci. Pap. Rep. 2012; 30, 231-40.

MN Ruzina, TA Shtyfurko, MR Mohammadabadi, OB Gendzhieva, T Tsedev and GE Sulimova. Polymorphism of the BOLA-DRB3 gene in the Mongolian, Kalmyk, and Yakut cattle breeds. Russ. J. Genet. 2010; 46, 456-63.

FG Gooki, M Mohammadabadi, MA Fozi and M Soflaei. Association of biometric traits with growth hormone gene diversity in Raini Cashmere goats. Walailak J. Sci. Tech. 2019; 16, 499-508.

M Pasandideh, MR Mohammadabadi, AK Esmailizadeh and A Tarang. Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech J. Anim. Sci. 2015; 60, 97-104.

MR Nassiry, FE Shahroodi, J Mosafer, A Mohammadi, E Manshad, S Ghazanfari, MR Mohammadabadi and GE Sulimova. Analysis and frequency of bovine lymphocyte antigen (BoLA-DRB3) alleles in Iranian Holstein cattle. Russ. J. Genet. 2005; 41, 664-8.

FG Gooki, MR Mohammadabadi and MA Fozi. Polymorphism of the growth hormone gene and its effect on production and reproduction traits in goat. Iran. J. Appl. Anim. Sci. 2018; 8, 653-59.

MTV Ebrahimi, MR Mohammadabadi and AK Esmailizadeh. Using microsatellite markers to analyze genetic diversity in 14 sheep types in Iran. Arch. Anim. Breed. 2017; 60, 183-9.

MR Mohammadabadi, A Torabi, M Tahmourespoor, A Baghizadeh, A Esmailizadeh and A Mohammadi. Analysis of bovine growth hormone gene polymorphism of local and Holstein cattle breeds in Kerman province of Iran using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Afr. J. Biotechnol. 2010; 9, 6848-52.

Y Zhang, L Colli and JSF Barker. Asian water buffalo: Domestication, history and genetics. Anim. Genet. 2020; 51, 177-91.

FAO. Domestic Animal Diversity Information System (DAD-IS). Available at: http://www.fao.org/dad-is/en/, accessed June 2020.

F Saputra, Jakaria and C Sumantri. Genetic variation of mtDNA cytochrome oxidase subunit I (COI) in local swamp buffaloes in Indonesia. Media Peternakan 2013; 36, 165-70.

M Rusdin, DD Solihin, A Gunawan, C Talib and C Sumantri. Genetic variation of eight Indonesian swamp-buffalo populations based on cytochrome b gene marker. Trop. Anim. Sci. J. 2020; 3, 1-10.

A Sukri, M Amin, A Winaya and A Gofur. Substitution and haplotype diversity analysis on the partial sequence of the mitochondrial DNA Cyt b of Indonesian swamp buffalo (Bubalus bubalis). Biol. Med. Nat. Prod. Chem. 2014; 3, 59-63.

F Saputra, Jakaria, A Anggraeni and C Sumantri. Genetic diversity of indonesian swamp buffalo based on microsatellite markers. Trop. Anim. Sci. J. 2020; 43, 191-6.

A Anggraeni, C Sumantri, L Praharani and E Andreas. Genetic distance estimation of local swamp buffaloes through morphology analysis approach. Jurnal Ilmu Ternak dan Veteriner 2011; 16, 199-210.

T Jombart, D Pontier and AB Dufour. Genetic markers in the playground of multivariate analysis. Heredity 2019; 102, 330-41.

M Argüelles, C Benavides and I Fernández. A new approach to the identification of regional clusters: hierarchical clustering on principal components. Appl. Econ. 2014; 46, 2511-9.

F Saputra, T Sartika, A Anggraeni, ABL Ishak, Komarudin and N Pratiwi. Multivariate analysis of five chicken breed in Indonesia based on microsatellite allele frequency. Livest. Anim. Res. 2021; 19, 48-53.

A Maugeri, M Barchitta, G Basile and A Agodi. Applying a hierarchical clustering on principal components approach to identify different patterns of the SARS-CoV-2 epidemic across Italian regions. Sci Rep. 2021; 11, 7082.

N Takezaki, M Nei and K Tamura. POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with windows Interface. Mol. Biol. Evol. 2010; 27, 747-52.

F Husson, J Josse, S Le and J Mazet. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. R package version 1.31.4. 2015; 24, 1-18.

A Kassambara and F Mundt. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020.

R Core T. R: A Language and Environment for Statistical Computing, Available at: https://cran.r-project.org/bin/windows/base/old/, accessed May 2020.

W Zhang, X Gao, Y Zhang, Y Zhao, J Zhang, Y Jia, B Zhu, L Xu, L Zhang, H Gao, J Li and Y Chen. Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle. BMC. Genet. 2018; 19, 114.

PP Agung, F Saputra, MSA Zein, AS Wulandari, WPB Putra, S Said and J Jakaria. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian Australas. J. Anim. Sci. 2019; 32, 467-76.

L Colli, M Milanesi, E Vajana, D Iamartino, L Bomba, F Puglisi, M Del Corvo, EL Nicolazzi, SSE Ahmed, Jesus R V Herrera, L Cruz, S Zhang, A Liang, G Hua, L Yang, X Hao, F Zuo, S-J Lai, S Wang, R Liu, Y Gong, M Mokhber, Y Mao, F Guan, A Vlaic, B Vlaic, L Ramunno, G Cosenza, A Ahmad, I Soysal, EÖ Ünal, M Ketudat-Cairns, JF Garcia, YT Utsunomiya, PS Baruselli, MEJ Amaral, R Parnpai, MG Drummond, P Galbusera, J Burton, E Hoal, Y Yusnizar, C Sumantri, B Moioli, A Valentini, A Stella, JL Williams and P Ajmone-Marsan. New insights on water buffalo genomic diversity and post‐domestication migration routes from medium density SNP chip data. Front. Genet. 2018; 9, 53.

Downloads

Published

2022-01-15

How to Cite

Saputra, F. ., Anggraeni, A. ., & Sumantri, C. . (2022). Hierarchical Clustering on Principal Components of Microsatellite Frequency Allele Data from Indonesian Buffaloes. Trends in Sciences, 19(2), 2045. https://doi.org/10.48048/tis.2022.2045