Optimization of Medium Components and Genes Expression Involved in IAA Biosynthesis by *Serratia plymuthica* UBCF_13

Liza Aulia Yusfi¹, Djong Hon Tjong²³, Irawati Chaniago⁴, Zetrya Andini¹ and Jamsari Jamsari³⁴,*

¹Doctoral Program of Agricultural Science, Faculty of Agriculture, Universitas Andalas, Padang, West Sumatera, Indonesia
²Department of Biology, Faculty of Mathematics and Life Sciences, Universitas Andalas, Padang, West Sumatera, Indonesia
³Biotechnology Magister Program, Post Graduate School, Universitas Andalas, Padang, West Sumatera, Indonesia
⁴Department of Agronomy Faculty of Agriculture, Universitas Andalas, Padang, West Sumatera, Indonesia

(Corresponding author’s e-mail: jamsari@agr.unand.ac.id)

Received: 15 December 2023, Revised: 7 March 2024, Accepted: 14 March 2024, Published: 20 June 2024

Abstract

Serratia plymuthica UBCF_13 produces the maximum level of indole-3-acetic acid (IAA) in yeast mannitol medium. However, the impact of medium ingredients on gene expression and metabolites related to IAA synthesis remains unclear. Therefore, Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) was used to assess the effects of culture medium optimization components on the genes involved in IAA production. High-Performance Liquid Chromatography (HPLC) has been employed to investigate the impact of medium constituents on the metabolites associated with the biosynthesis of IAA. The highest IAA production was found in sucrose and yeast extract as the carbon and nitrogen sources (134.6 µg/mL). It was also discovered that calcium carbonate and magnesium sulfate are significant inorganic salts for UBCF_13 in the production of IAA. Most genes showed higher levels of expression when sucrose was used as the carbon source, including *ijdC*, *nhB*, *puuC*, *amiE*, *oxdA*, *tyrB* and *nthB*. Furthermore, the expression of *tyrB*, *puuC*, *DDC* and *oxdA* was upregulated in response to calcium carbonate, while *puuC*, *nhB*, *nthB* and *amiE* expression levels were elevated in the presence of magnesium sulfate. Indole-3-acetamide (IAM) was identified with HPLC as an intermediate product in several optimized culture media, with the highest IAA concentration (429.79 µg/mL) which was observed in yeast sucrose medium. Thus, sucrose played a pivotal role in IAA biosynthesis, and yeast sucrose medium supplemented with complete inorganic salts emerged as the optimal medium for IAA production by UBCF_13.

Keywords: HPLC, Indole-3-acetic acid, Medium optimization, Plant growth promoting bacteria, Quantitative reverse transcription-PCR

Introduction

Plant growth-promoting bacteria (PGPB) constitute a group of bacteria that are capable to enhance plant growth through the production of phytohormones, siderophores and antifungal metabolites [1]. *Serratia plymuthica* is recognized as one of the PGPB species having symbiotic relationships with plants, functioning both as rhizosphere and phyllosphere bacteria [2-4]. Several mechanisms are employed by *S. plymuthica* to promote plant growth including the production of antifungal compounds [5-7], siderophore compounds [8-10], phosphate solubilization [11], antibacterial agents [12], osmoprotectants [13] and phytohormones.

IAA stands out as one of the most prevalent and extensively studied phytohormones synthesized by PGPB [1]. Numerous investigations have demonstrated that IAA synthesized by PGPB contributes to enhance plant resilience against stresses such as drought and salinity [14-18]. IAA produced by PGPB also increased the growth and metabolite production of aromatic and medicinal plants [19]. Notably, various strains of *S. plymuthica* possess the capacity for IAA production, including *S. plymuthica* AS13 [20], *S. plymuthica* G3 [5], *S. plymuthica* M24T3 [21], *S. plymuthica* DT8 [22], *S. plymuthica* EDC15 and *S. plymuthica* EEPC5 [23].
S. plymuthica UBCF_13 is one of the IAA-producing strains which augments the growth of various Solanaceae plants [24]. In the previous studies, numerous factors aimed at optimizing IAA synthesis by UBCF_13 have been explored. It was determined that YM medium supplemented with 300 μg/mL tryptophan and incubated for 9 h (for colorimetric assay) and 21 h (for HPLC assay) provided the optimal culture condition [25,26]. However, further investigation into medium components is warranted, as nutrients play a crucial role in influencing secondary metabolite production by microorganisms [27,28]. The IAA production by plant growth promoting rhizobacteria (PGPR) from Stevia rebaudiana is significantly influenced by the carbon and nitrogen sources [29]. In another study, it was found that maltose and a combination of yeast extract and tryptone increased the IAA production of Pseudarthrobacter sp. NIBRBC000502770 [30]. Inorganic salt, such as sodium chloride, has a positive effect on enhancing the IAA production by Rhizobium sp. and Streptomyces fradiae NKZ-259 [31,32].

Although studies regarding the impact of the medium components such as carbon, nitrogen and mineral sources on IAA production have been extensively analyzed, the impact of these components on the expression of the genes involved in IAA production remains unexplored. Culture medium components have been shown to regulate the production of metabolites in certain strains, thereby influencing gene expression in metabolite production [33-35]. Tryptophan has commonly been utilized in culture media to analyze the expression of genes involved in IAA synthesis [30,36-38]. The IAA biosynthesis pathway in bacteria involves both tryptophan-dependent and tryptophan-independent pathways. In general, microorganisms produce IAA through a tryptophan-dependent pathway consisting of indole-3-pyruvic acid (IPyA), tryptamine (TAM), indole-3-acetaldoxime (IAOx)/indole-3-acetonitrile (IAN) and IAM [39]. The expression of IAA biosynthesis genes in UBCF_13 has been analyzed by adding tryptophan at different incubation times. The nthA and nthB genes, associated with the IAN-IAM pathway, exhibited the highest upregulation in the addition of tryptophan after 3 h of incubation [26]. However, the impact of optimized medium components on IAA biosynthesis genes has not been studied. Thus, this study aimed to optimize the carbon, nitrogen and inorganic salt sources in the culture medium and reveal the effect of optimized medium components on the expression of IAA biosynthesis genes in UBCF_13.

Materials and methods

Bacterial strain and culture conditions

Serratia plymuthica UBCF_13 (Universitas Andalas - Biotechnology Laboratory Collection accession no: KX394779) was pre-cultured on LB agar (HiMedia, India) for 24 h at 28 °C [40]. The single colony from the previous culture was then inoculated into LB broth and incubated at 160 rpm for 16 h at 28 °C.

Optimization of medium components for IAA production

Based on our previous study [25], the optimized culture medium was yeast mannitol (YM) broth consisting of 10 g/L mannitol, 0.1 g/L sodium chloride, 0.5 g/L dipotassium phosphate, 0.2 g/L magnesium sulphate, 1 g/L yeast extract and 1 g/L calcium carbonate and added with 300 μg/mL tryptophan. In this study, we used a 1 factor at 1 time method for the optimization of IAA production. Optimization was analyzed based on different carbon, nitrogen and sole inorganic salt sources. Carbon source optimization included YM medium devoid of mannitol (no carbon), YM medium with mannitol (mannitol) and substitution of mannitol with diverse sugar sources (sucrose, maltose, glucose and starch). Nitrogen source optimization entailed an optimized medium devoid of yeast extract (no nitrogen) and the replacement of yeast extract with different nitrogen sources (urea, peptone, tryptone, ammonium sulphate and potassium nitrate). The effect of sole inorganic salt from the optimized medium on IAA production was evaluated using a medium devoid of inorganic salt (no inorganic salt) and a medium containing each inorganic salt compound (dipotassium phosphate, magnesium sulphate, sodium chloride and calcium carbonate). Each experiment was conducted using a completely randomized design (CRD) with 3 biological replicates.

The pre-inoculated bacteria were added 1 mL to each treatment of optimization medium culture and incubated for 9 h at 160 rpm, 28 °C. The bacterial growth analysis was conducted by measuring the optical density using a UV spectrophotometer (V1100D, Mapada Instruments, China) at 600 nm. The colorimetric assay was used to measure the IAA production from each experiment [41]. The bacterial culture was centrifuged at 10,000 rpm at 4 °C for 10 min. The supernatant was then added with Salkowski reagent (35 % H2SO4 and 1 % 0.5 M FeCl3) and incubated at 28 °C for 30 min in the dark. The absorbance of IAA from each treatment was measured with a UV spectrophotometer (V1100D, Mapada Instruments, China) at 530 nm. The IAA standard from 5 to 100 mg/mL was used to plot the standard curve for the IAA concentration quantification of each sample.
The effect of medium components optimization on gene expression related to IAA biosynthesis

Quantitative real-time PCR (qRT-PCR) was applied to evaluate the effect of medium component optimization on gene expression. The SV Total RNA isolation system kit (Promega, USA) was used to extract the total RNA and the ReverTra AceTM qPCR RT Master Mix with gDNA Remover (Toyobo, Japan) was used to create the cDNA. The THUNDERBIRD™ SYBR™ qPCR Mix (Toyobo, Japan) was used to run the qRT-PCR on the CFX96 Touch Real-Time PCR Detection System (Bio-Rad, USA). The cycling condition and primers used in this study refer to Yusfi et al. [26]. This experiment was conducted in a triplicate. The transcript level data was evaluated using the 2^ΔΔCT method [42].

Detection of indole compound by HPLC analysis

The samples were prepared based on the significant treatments from the previous optimization process. The UBCF_13 was grown in yeast extract - sucrose with complete inorganic salt (sucrose), sucrose with complete inorganic salt (no nitrogen), yeast sucrose with magnesium sulphate and yeast sucrose with calcium carbonate for 21 h. Crude extract preparation was done according to Yusfi et al. [50,51]. The sample was centrifuged at 10,000 rpm for 10 min, 4 °C then the supernatant was acidified to pH 2.7 with HCl (1N). The samples were extracted twice with 2 volumes of ethyl acetate. A rotary evaporator (Heidolph, Germany) was used to evaporate the fraction of ethyl acetate for 15 min at 40 °C, 150 rpm and 240 mbar vacuum pressure. Methanol was used to dissolve the extract. The extract was evaluated by high performance liquid chromatography (HPLC; Shimadzu 10A-Typ HPLC system, Japan) equipped with Shim-pack MRC-ODS RP - 18 column (Shimadzu, Tokyo, Japan). Acetonitrile: Water: Acetic acid (40:60:0.01 %) was used as the mobile phase. The total run time was 30 min at a flow rate of 1.0 mL/min [43]. The indole compounds were identified at the wavelength of 280 nm. Verification and quantification were analyzed by comparing the retention time and the standard curve of indole standards from Yusfi et al. [26].

Statistical analysis

The data were analyzed using analysis of variance (ANOVA) and the Duncan Multiple Range Test (significance = 0.05) was used for mean separation through SPSS version 24.0 software. GraphPad Prism 9 was used to construct each graph.

Results and discussion

Optimization of medium components for IAA production

In the previous studies, the production of IAA by UBCF_13 has been optimized through various factors, including tryptophan concentration, pH, medium type and incubation time [24-26]. In this study, the optimization of IAA production was conducted by carbon, nitrogen and sole inorganic salt sources in the YM medium. A correlation between bacterial density and IAA production was observed in the optimization of several carbon sources, namely mannitol, sucrose, glucose and maltose (Figure 1). A positive correlation was also found between the optimal carbon source for bacterial growth and IAA production in Pseudarthrobacter sp. NIBRBAC000502770 [30]. Uniquely, the IAA production from glucose was higher than maltose and starch where both of them were di- and polysaccharides composed of glucose [44,45]. Chandra et al. [29] observed that IAA production from monosaccharides was higher than polysaccharides and disaccharides. However, in UBCF_13, the highest IAA concentration was found in sucrose which was grouped as a disaccharide consisting of glucose and fructose. The concentration of IAA in sucrose (134.6 µg/mL) was increased by 11.26 µg/mL compared to mannitol as the carbon source of basal medium, YM (Figure 1). Sucrose has also been identified as the optimal carbon source for IAA production in various microorganisms, including Rhodospirillum paludigenum DMKU-RP301, Klebsiella pneumoniae OM-17.2, Providencia sp. (TMM11), Enterobacter cloacae MG00145, Bacillus megaterium MQ-2.5, Pseudomonas bereopolis CP-18.2 and Paenibacillus cineris TP-1.4 [46-49]. Most PGPB produced the highest IAA in the media with mono- and disaccharide carbon sources. PGPB, which produces higher IAA in disaccharide carbon sources, may be influenced by the number of membrane transport systems for sugar uptake and a more complex enzymatic system for carbohydrate degradation [50,51]. These findings suggest that the optimal type of carbon source for IAA production varies among bacteria based on their specific enzymatic systems for carbohydrate degradation [51].
Figure 1 The effect of carbon source on bacterial growth and IAA production by UBCF_13. Each culture was added 300 µg/mL tryptophan. Values were means of 3 replicates ± SD. Lowercase letters represent significant differences among treatments by DMRT (alpha = 0.05 %).

Furthermore, the IAA production from different nitrogen sources did not correlate with the cell growth of UBCF_13 (Figure 2), consistent with the findings by Ham et al. [30]. Several nitrogen sources that have been applied in this study were categorized as organic (peptone and tryptone) and inorganic nitrogen (urea, potassium nitrate and ammonium nitrate). The IAA yield of urea and ammonium sulphate significantly decreased, which referred to the presence of the ammonium compound. Ammonia, as the nitrogen source in the culture medium, regulates and inhibits the production of several secondary metabolites [52]. Figure 2 illustrates that bacterial growth was inhibited in the medium without nitrogen. Interestingly, although the IAA production in this medium remained high, the IAA concentration did not surpass it (Figure 1). Yeast extract, an organic nitrogen source containing vitamins and growth factors, promotes bacterial growth and enhances tryptophan availability for IAA synthesis [53]. In some similar studies, the yeast extract as the optimal nitrogen source for IAA production in Bacillus isolates from Vigna radiata, Enterobacter sp. DMKU-RP206 and Pseudomonas fluorescens E9 was identified [53-55].

Figure 2 The effect of nitrogen source on bacterial growth and IAA production by UBCF_13. Each culture was added 300 µg/mL tryptophan. Values were means of 3 replicates ± SD. Lowercase letters represent significant differences among treatments by DMRT (alpha = 0.05 %).
The growth of UBCF_13 increased upon the addition of magnesium sulphate and calcium carbonate as the sole inorganic salt in the medium culture (Figure 3). Conversely, bacterial growth decreased in media lacking inorganic salt, containing dipotassium phosphate, or comprising sodium carbonate, leading to undetectable levels of IAA production. Significantly, IAA production was markedly elevated in the medium supplemented with magnesium sulphate (80 µg/mL) and calcium carbonate (43 µg/mL). Both inorganic salts are crucial for bacterial development and thus enhance biomass production [56,57]. The effect of sole inorganic salt has been previously studied on yeast mannitol medium, revealing IAA production only in the presence of magnesium sulphate [58]. Therefore, the increase of IAA amount in calcium carbonate addition was predicted due to the interaction between calcium carbonate and sucrose. In this study, the addition of sodium chloride did not influence the IAA production in UBCF_13. On the contrary, in the other studies, it was found that sodium chloride was an essential inorganic salt to induce the IAA production of Enterobacter sp. DMKU-RP206, Rhizobium sp., Pseudarthrobacter sp. NIBRBAC000502770, halotolerant bacteria, Bacillus circulans E9 [30,32,53,59,60].

Figure 3 The effect of sole inorganic salt source on bacterial growth and IAA production by UBCF_13. Each culture was added 300 µg/mL tryptophan. Values were means of 3 replicates ± SD. Lowercase letters represent significant differences among treatments by DMRT (alpha = 0.05 %).

Overall, the highest IAA production (134.6 µg/mL) by UBCF_13 was found in yeast sucrose medium consisting of 10 g/L sucrose, 0.1 g/L sodium chloride, 0.5 g/L dipotassium phosphate, 0.2 g/L magnesium sulphate, 1 g/L yeast extract and 1 g/L calcium carbonate with 300 µg/mL tryptophan in 9 h incubation. IAA production in the range of approximately 100 µg/mL has also been reported in several studies employing different media compositions. Bhutani et al. [54] and Lebrazi et al. [32] found that Bacillus aryabhattai MBN3 and Rhizobium sp. produced IAA maximum at 92.03 µg/mL and 116.42 µg/mL, respectively in yeast mannitol broth. Streptomyces plicatus PT2 achieved a maximum IAA production of 110.29 µg/mL in a basic mineral medium supplemented with 4 mg/L L-tryptophan and tomato root extract [61]. Additionally, Chandra et al. [29] observed the highest IAA production (104 µg/mL) by isolate CA1001 in nutrient broth with dextrose as the carbon source. Pseudomonas boreopolis CP-18.2 and Klebsiella pneumoniae OM-17.2 also produce IAA at approximately 120 µg/mL in Burk’s medium with 1 % NaCl and sucrose as the carbon source [49]. The utilization of sucrose as the carbon source for IAA production was also applied in Providencia sp. and Enterobacter cloacae MG00145. Providencia sp. achieved the highest IAA production (89.22 µg/mL) in medium containing sucrose, urea and tryptophan (0.1 %) after 24 h of incubation [48]. Meanwhile, Enterobacter cloacae MG00145 maximally produced IAA (30 µg/mL) in nutrient broth supplemented with 0.5 % sucrose and 0.1 % calcium nitrate [47]. Besides sucrose, the best carbon source in IAA production media varies in various PGPB strains. Pseudarthrobacter sp. NIBRBAC000502770 produced IAA (24.73 µg/mL) in medium consisting of yeast extract, NaCl, tryptone, L-tryptophan and maltose as the carbon source [30]. Mannose and mannitol as the carbon source
with ammonium chloride, potassium nitrate and tryptophan as the medium composition for *Bacillus velezensis* to produce IAA (56.60 μg/mL) [62]. Pea flour medium (PYM) and alginate medium have also been applied as the medium culture for IAA production by *Bacillus circulans* E9 (7.81 μg/mL) and *Vibrio* sp. 9.32 μg/mL, respectively [60,63].

The effect of medium components optimization on gene expression related to IAA biosynthesis

The effect of carbon source on the expression of IAA synthesis genes has been investigated (Figure 4). The relative expression of *tyrB* slightly increased by 1.5 folds in sucrose (Figure 4(A)). The expression levels of *ipdC* and *puuC* were the highest under the effect of sucrose (Figures 4(B) and 4(C)). However, in DDC, the maximum transcript level was found in mannitol by 9 and 3.2 folds higher than no carbon (Figure 4(D)). The expressions of *oxdA*, *nthA*, *nthB* and *amiE* were significantly increased in sucrose which was 2.3 folds, 5.4 folds, 4.7 folds and 11.6 folds higher than no carbon, respectively (Figures 4(E) and 4(H)). It was observed that almost all gene expressions were elevated when sucrose was utilized as the carbon source. In glucose, the upregulation was found in *oxdA*, *nthA* and *nthB*, while in maltose and starch, the relative expression increases were not observed across all genes.

Moreover, based on the effect of the nitrogen source, it can be observed that the expression of *tyrB* was down-regulated in urea and was not upregulated significantly in other nitrogen sources (Figure 5(A)). The expression of *ipdC* was downregulated considerably in urea, peptone, potassium nitrate and ammonium sulphate (Figure 5(B)). A similar result with *tyrB* was also found in *puuC*, where the expression level was not upregulated significantly among all treatments (Figure 5(C)). The expression of DDC was elevated in potassium nitrate by 2.2 folds compared to no nitrogen (Figure 5(D)). None of the nitrogen sources significantly influenced the upregulation of *oxdA* expression level (Figure 5(E)). The expression of *nthA* was significantly upregulated in peptone with 14.3 folds higher than no nitrogen (Figure 5(F)). In *nthB*, the expression level only increased in potassium nitrate by 2.9 folds higher than no nitrogen (Figure 5(G)). The maximum increment of *amiE* expression level was found in urea by 3.7 folds compared to no nitrogen (Figure 5(H)). In ammonium sulphate, almost all of the genes were not upregulated significantly, corresponding to the low concentration of IAA production in this nitrogen source (Figure 2).

Based on the optimization assay, the inorganic salt also influenced the production of IAA in UBCF_13 thus we observed its effect on the expression of IAA synthesis genes. The expression of *tyrB* was weakly upregulated in calcium carbonate by 1.4 folds (Figure 6(A)). However, the addition of each inorganic salt decreased the expression level of *ipdC* (Figure 6(B)). The addition of sole inorganic salt also showed a mild effect to influence the expression of *nthB*, *oxdA*, *puuC*, *nthA* and DDC. The expression of *puuC* was increased in magnesium sulphate and calcium carbonate addition by 1.5 folds. The maximum expression levels of DDC and *oxdA* were observed with calcium carbonate addition. In both nitrile hydratase genes, *nthA* and *nthB*, the expression levels were elevated with the addition of magnesium sulphate (Figures 6(C) and 6(G)). Interestingly, the addition of magnesium sulphate also increased the expression level of *amiE* significantly by 4.8 folds compared to no inorganic salt (Figure 6(H)). Therefore, the addition of magnesium sulphate influenced the expression level of genes involved in IAM pathway.
Figure 4 The effect of carbon source on the relative expression of IAA synthesis genes in UBCF_13. (A) The expression level of tyrB; (B) The expression level of ipdC; (C) The expression level of puuC; (D) The expression level of DDC; (E) The expression level of oxdA; (F) The expression level of nthA; (G) The expression level of nthB; (H) The expression level of amiE. Values were means of 3 replicates ± SD. Lowercase letters represent significant differences among treatments by DMRT (alpha = 0.05 %).
Figure 5 qRT-PCR analysis of the relative expression of IAA synthesis genes in different nitrogen sources. (A) *tyrB*; (B) *ipdC*; (C) *puuC*; (D) *DDC*; (E) *oxdA*; (F) *nthA*; (G) *nthB* and (H) *amiE*. Values were means of 3 replicates ± SD. Lowercase letters represent significant differences among treatments by DMRT (alpha = 0.05%).
Figure 6 The relative expression of IAA biosynthesis genes in various sole inorganic salt sources. Values were means of 3 replicates ± SD. Lowercase letters represent significant differences among treatments by DMRT (alpha = 0.05 %).

Since each compound on medium optimization impacted the production of IAA by UBCF_13, using qRT-PCR, we evaluated the expression of the IAA-producing genes. Several studies found that the medium component affected the expression of genes associated with bacterial metabolite production. For instance, various carbon sources influenced the expression of lactate synthesis genes in Streptococcus bovis S1 [64,65]. Nitrogen source also impacted the expression of [FeFe]-hydrogenases genes regarded to hydrogen production of Clostridium butyricum CWBI1009 [66]. Moreover, the expression of rhamnolipid production genes has been influenced by various combinations of carbon and nitrogen sources [35]. The optimized medium culture also positively correlated with the expression of riboflavin synthesis genes in Lactobacillus plantarum CRL 725 and the expression of WL gum synthesis genes in Sphingomonas sp. WG [67,68].
Figure 7 The effect of medium optimization component on the relative expression of IAA synthesis genes in UBCF_13. Each color line represents the upregulation of gene expression from each medium component. The box line shows metabolite detected in optimized medium culture.

An overview of each compound that most influenced the expression of the genes involved in IAA production in UBCF_13 is described in Figure 7. The genes related to the indole-3-pyruvate (IPyA) pathway consist of tyrB, ipdC and puuC. The expression of tyrB was increased by sucrose and calcium carbonate. The tyrB gene encodes aromatic aminotransferase, which converts TRP to IPyA [69]. Additionally, environmental factors such as low oxygen levels have been reported to increase tyrB expression [70]. The expression of ipdC was influenced only by sucrose (Figure 7). ipdC is the critical gene in the IPyA pathway that encodes indole-3-pyruvate decarboxylase. The expression of this gene could be influenced by environmental factors such as biogas-supplemented culture [71]. In puuC, the expression was increased by sucrose, calcium carbonate and magnesium sulphate (Figure 7). This gene encodes aldehyde dehydrogenase which converts IPyA to IAA [37]. Li et al. [72] reported that the addition of Caenorhabditis elegans extracts to the medium culture of Arthrobacter pascens ZZ21 increased the expression of puuC and other aldehyde dehydrogenase genes. In the TAM pathway, the expression of DDC was upregulated by mannitol, potassium nitrate and calcium carbonate (Figure 7). DDC or TDC encodes L-tryptophan decarboxylase, responsible for converting TRP to TAMTRY [73]. Tullio et al. [74] reported that the expression of apigenin in the medium culture of Rhizobium tropici CIAT 899 increased the expression level of the TDC gene. The expression of oxdA, involved in the indoleacetaldoxime (IAOx) pathway, was influenced by sucrose and the addition of calcium carbonate (Figure 7). A study by Buezo et al. [75] revealed that various nitrogen sources, especially in ammonium addition gave the highest level expression of the oxd gene. On the other hand, in this study, different nitrogen sources did not significantly upregulate oxdA expression in UBCF_13 (Figure 5). The oxd gene encodes indoleacetaldoxime dehydratase which converts IAOx to IAN [76]. The expression of nthA and nthB was upregulated maximum in sucrose and magnesium sulphate whereas, on nitrogen source, nthA and nthB were upregulated maximally in peptone and potassium nitrate, respectively (Figures 4 - 6). Liu et al. [77] also observed nthA upregulation with the addition of soybean root exudates in the Bradyrhizobium diazoefficiens culture medium. The genes nthA and nthB encode nitrile hydratase, crucial in converting IAN into IAM and connecting the IAN pathway to the IAM pathway [78]. amiE, the last gene associated with the IAM pathway, exhibited increased expression levels in sucrose, urea and magnesium sulfate (Figure 7). amiE encodes aliphatic amidase that converts IAM to IAA [79]. The expression of amiE regarding the effect of the medium component was still unknown. However, the addition of tryptophan in medium culture upregulated the amiE expression in Pseudarthrobacter sp. NIBRRBAC000502770 and Serratia plymuthica UBCF_13 [26,30].

Several components optimized in the medium have been shown to upregulate gene expression levels in the IAM pathway, indicating that UBCF_13 may employ this pathway for IAA production. Based on genome mining, the IPyA pathway was found to be the only pathway for IAA biosynthesis in Serratia plymuthica G3, Serratia marcescens UENF-22GI, Serratia sp. ZM and Serratia marcescens S217 [5,80-
In addition to the IPyA pathway, the TAM pathway has been identified as the only IAA biosynthesis pathway in *Serratia fonticola* GS2 [83]. The genomes of other *Serratia* strains also had genes associated with multiple IAA biosynthetic pathways. For example, the *Serratia marcescens* RSC-14 genome had genes associated with the IPyA, IAM and IAN pathways [84]. *Serratia sp. M24T3* also possesses genes associated with several IAA biosynthetic pathways, including the TAM, IAM and IAN pathways [21].

Identification and quantification of indole compound in optimized medium culture by HPLC

HPLC analysis was employed to further investigate the presence of indole compounds in the optimized medium. Tryptophan (TRP), IAA and IAM were detected in all optimized medium cultures (Table 1). The concentration of TRP was significantly high in yeast extract sucrose with complete inorganic salt (sucrose) and yeast sucrose with calcium carbonate only (calcium carbonate). The IAM concentration was not significantly different among the optimized medium. In sucrose, no nitrogen and calcium carbonate showed the IAM concentration was lower than the TRP and IAA concentration. The highest IAA concentration was found in yeast extract sucrose with the complete inorganic salt medium. A similar result was observed in the colorimetric assay in which the highest IAA concentration was detected in sucrose (Figures 1 and 2). The IAA concentration of calcium carbonate was 3 times higher than magnesium sulphate in HPLC analysis. However, in the colorimetric assay, the IAA concentration of calcium carbonate is 50% lower than magnesium sulphate (Figure 3).

Table 1 Indole quantification by HPLC analysis.

<table>
<thead>
<tr>
<th></th>
<th>TRP (µg/mL)</th>
<th>IAM (µg/mL)</th>
<th>IAA (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose</td>
<td>191.68c</td>
<td>102.56</td>
<td>429.79c</td>
</tr>
<tr>
<td>No Nitrogen</td>
<td>138.79ab</td>
<td>72.66</td>
<td>346.21bc</td>
</tr>
<tr>
<td>Magnesium sulphate</td>
<td>62.98a</td>
<td>81.97</td>
<td>58.04a</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>198.81c</td>
<td>90.88</td>
<td>199.45ab</td>
</tr>
</tbody>
</table>

Data represents mean concentrations from 3 biological replicates and different lowercase letters indicate significant differences between treatments based on DMRT (alpha = 0.05 %).

Overall, the significant upregulation of expression levels observed in genes associated with the IAM pathway (*nthA, nthB* and *amiE*) corresponds to the presence of IAM as the only intermediate detected in the extract of the optimized medium culture. Additionally, TRP and IAA were consistently detected in all extracts from the optimized medium culture (Table 1) (Figure 7). Similar findings by Yusub et al. [26] also reported the presence of IAM in UBCF_13 extracts following time culture optimization. Therefore, the IAM pathway might be applied in UBCF_13 to synthesize IAA. Further investigations are warranted to analyze transcriptomic and metabolomic data related to the IAA biosynthesis pathway of UBCF_13. Transcriptomic and metabolomic studies can be conducted using LC-MS and RNA-seq techniques. Both methodologies offer insights into differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs), thus elucidating the primary pathway, gene regulation and alterations at the genotype and phenotype levels in response to treatment [85,86]. Evaluating other metabolites in the IAA biosynthesis pathways using LC-MS also provides additional insights into the flux of auxin biosynthesis.

Conclusions

In conclusion, in this study, it was found that sucrose and yeast extract with complete inorganic salt (dipotassium phosphate, magnesium sulphate, sodium chloride and calcium carbonate) as the optimal medium for IAA production by UBCF_13. Expression levels of *amiE, nthA, oxdA, tyrB, nthB, puuC* and *ipdC* were also increased when sucrose served as the carbon source. Magnesium sulphate and calcium carbonate played significant roles in IAA production, as evidenced by colorimetric and HPLC assays. This observation aligned with the upregulation of the genes *tyrB, puuC, DDC* and *oxdA* in media containing calcium carbonate and the upregulation of the genes *puuC, nthA, nthB* and *amiE* in media containing magnesium sulphate.
Acknowledgements

This work was fully funded by Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia through PMDSU research grant fiscal year 2020 - 2022 [contract number: SP DIPA-T/13/UN.16.17/PT.01.03/PMDSU-Pangan/2021, 042.06.1.401516/2020 and 011/E5/PG.02.00.PT/2022].

References

[43] SL Sun, WL Yang, WW Fang, YX Zhao, L Guo, YJ Dai and I Cann. The plant growth-promoting rhizobacterium *Favvoirax boronicumulans* CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile. *Appl. Environ. Microbiol.* 2018; 84, 298-316.

[71] JA Barbosa-Nuñez, OA Palacios, LE De-Bashan, R Snell-Castro, RI Corona-González and FJ Choix. Active indole-3-acetic acid biosynthesis by the bacterium Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. J. Appl. Microbiol. 2022; 132, 3650-63.

[72] M Li, T Li, M Zhou, M Li, Y Zhao, J Xu, F Hu and H Li. Caenorhabditis elegans extracts stimulate IAA biosynthesis in Arthrobacter pascens ZZ21 via the indole-3-pyruvic acid pathway. Microorganisms 2021; 9, 970.

[78] D Duca, DR Rose and BR Glick. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl. Environ. Microbiol. 2014; 80, 4640-9.

[79] CEM Grossi, E Fantino, F Serral, MS Zawoznik, DAFD Porto and RM Ulloa. Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Front. Plant Sci. 2020; 11, 71.

