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Abstract  

 The performance of surface precipitation data from satellite precipitation products (SPPs) in 

mountainous areas has greater error and bias than in plain areas. In this study, linear scaling (LS), local 

intensity (LOCI), power transformation (PT), and cumulative distribution function (CDF) methods are used 

to correct the bias of Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) 

data in the mountainous region of Sumatra based on long-term and high-resolution optical rain gauge 

(ORG) observations. The ORG is installed at Equatorial Atmospheric Observatory (EAO) in Kototabang, 

West Sumatra, Indonesia (100.32 °E, 0.20 °S, 865 m above sea level (ASL) with an observation period 

from 2002 to 2016. The impact of the bias correction method is tested based on accuracy and capability 

detection tests. The bias correction method is more effective at the daily resolution than the hourly 

resolution of the IMERG data in the mountainous region of Sumatra. The LS method exhibited the best 

improvement in accuracy with reduced root-mean-square error (RMSE) and relative bias (RB), although 

there was no significant increase in coefficient correlation (CC) values. However, the accuracy 

improvement was not observed in the bias correction for hourly data. The lack of improvement in the 

accuracy of the hourly IMERG data is due to the high local variability of rainfall in the mountainous area 

of Sumatra. The high data variability causes large differences in the mean and variance of the IMERG 

calibration and evaluation data periods. On the other hand, the LOCI, PT, and CDF methods were 

successfully improved the rain detection capability of IMERG, as indicated by the better critical succession 

index (CSI) values compared to the original hourly and daily IMERG data. It increased the CSI value by 

reducing false alarms for rain with intensity below 2 mm/h. Furthermore, the CDF method can improve the 

analysis of extreme rainfall in the mountainous region of Sumatra by improving the estimation of the 

extreme rainfall index. Therefore, these methods can be applied to improve the accuracy and detectability 

of IMERG data in the mountainous region of Sumatra. However, the scale factor and transfer function 

constructed in this study need to be further evaluated on other rain gauge observation data in Sumatra’s 

mountainous region to improve performance. 
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Introduction 

 The development of surface rainfall estimation technology from satellite observations has grown 

rapidly over the past few decades. One of the best resolution satellite precipitation products (SPPs) data is 

SPPs developed by the National Aeronautics and Space Administration (NASA). NASA’s best resolution 

SPPs data is currently surface rainfall data based on satellite observations of the Global Precipitation 

Measurement (GPM) constellation. NASA’s multi-satellite rainfall data is known as Integrated Multi-

Satellite Retrievals for GPM (IMERG)  [1]. IMERG data has a resolution of 0.1 ° - 30 min with a quasi-

global observing range (60 °S - 60 °N). The good resolution and wide coverage of IMERG have the 

potential to be utilized in various applications in hydrology, meteorology, and climatology  [2-5]. 
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 Researchers worldwide have been evaluated the performance of IMERG due to its wide potential 

utilization [6], providing valuable information for NASA to improve algorithms. The validation results also 

serve as a reference for users to assess the accuracy of IMERG data in various applications. However, it is 

important to note that IMERG data still contains errors and uncertainties related to sensor limitations, 

incorrect observation assumptions, and algorithm usage [7,8]. These factors contribute to the need for 

ongoing development and improvement of IMERG data. Thus, it is expected that the accuracy of IMERG 

data will improve, further expanding its utilization and applicability in different fields.  

 To improve the accuracy and reliability of IMERG data, one approach is to employ bias correction 

methods [9]. Bias correction involves using observed rainfall data on the surface as a reference to correct 

the IMERG data. Previous studies have demonstrated the effectiveness of bias correction methods in 

reducing errors and uncertainties in IMERG data [10-12]. However, correcting IMERG data in areas with 

complex topography, like mountainous regions, remains a challenge [13-15]. The challenges of IMERG 

bias correction in complex topographic regions are due to the complex weather systems in these regions. 

The complex weather system in these areas is caused by complex local wind patterns and orographic lift 

due to topographic effects.  Overall, bias correction methods have proven beneficial in enhancing the quality 

of IMERG data, but further advancements are needed to address the challenges in correcting IMERG data 

in complex terrain areas. 

 There are several studies that have conducted to improve the accuracy of IMERG data in mountainous 

areas by minimizing false detection of rainfall events  [10,12,13]. However, bias correction in these areas 

remains unsatisfactory due to limited surface rainfall observations as reference points. The number and 

resolution of surface gauges used for bias correction affect the accuracy improvement and detection 

capabilities of IMERG data [16]. In developing countries with limited surface networks, it is challenging 

to apply bias correction methods to mountainous regions. Therefore, further research is needed to test bias 

correction methods of IMERG data based on single gauge observations in mountainous areas. It would 

contribute to better understanding and correction of rainfall data in the mountainous areas with very limited 

gauge observation. 

 This research focuses on correcting biases in the IMERG data for rainfall in the mountainous area of 

Sumatra, which is located in the western of Indonesia maritime continent (IMC). The IMC is known for its 

active cumulus activity, making accurate rainfall data crucial for monitoring and mitigating 

hydrometeorological disasters. In addition, the mountainous region of Sumatra located in the western part 

of the IMC plays an important role in local rainfall patterns due to land-sea interaction [17,18]. The 

localized rainfall pattern in this region means that surface rainfall data with high accuracy and resolution is 

needed to improve regional weather and climate forecasting models. Previous evaluations have shown that 

the IMERG data in the IMC still needs improvement, especially for daily and hourly resolution and in areas 

with complex topography [19-24]. The IMC region has a complex land surface and numerous mountains 

due to its location in the Ring of Fire. Therefore, the mountainous regions of the IMC largely lack an 

adequate surface observation network. Thus, correcting the biases in the IMERG data specifically in 

mountainous areas of the IMC would enhance the accuracy of surface rainfall data for daily and hourly 

resolution in these regions. 

 

Materials and methods 

 Study area and optical rain gauge data 

 The research site is the Equatorial Atmospheric Observatory (EAO) of the National Research and 

Innovation Agency (BRIN) in Kototabang (100.32 °E, 0.20 °S, 865 m above sea level (ASL)), West 

Sumatra, Indonesia (Figure 1). EAO was established in 2001 by the Indonesian government in cooperation 

with Kyoto University, Japan. The main purpose of EAO is to observe the dynamics of the equatorial 

atmosphere. Its main instrument is the Equatorial Atmospheric Radar (EAR) [25]. In addition to EAR, there 

are several other observation instruments, including high-resolution observation of surface rainfall, namely 

Optical Rain Gauge (ORG).  

 The Optical Rain Gauge (ORG) in Kototabang is an output of the Optical Scientific inc (OSI) 

company with the ORG-815 series that measures rainfall based on scintillation technology. The basic 

principle of scintillation technology in measuring rainfall is based on variations in the intensity of the laser 

captured by the sensor when raindrops pass through it. In detail, the mechanism of ORG in measuring 

rainfall can be seen on the website of the development company (OSI website). The recording resolution 

of the ORG in Kototabang is set for every 1-min with rainfall observation accuracy in the range of 0.1 - 

500 mm/h  [26]. The ORG in Kototabang started operating in March 2002 and stopped recording in 

December 2016. The percentage of ORG data availability over the 15 years can be seen in Figure 2(a).  
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Figure 1 The location of Kototabang on Sumatra Island (a) and the topography of the ORG installation site 

in Kototabang (b). The red asterisk indicates the location of ORG, the red rectangle is the centroid of the 

IMERG grid closest to ORG, and the dashed red line is the IMERG data grid being compared. 

 

 Previous studies have characterized the rainfall climatology of the Kototabang region using ORG 

observations and other instruments. Kototabang has high annual rainfall with a range of 2400 mm/year due 

to its location near the equator and in the mountainous region of Sumatra [20]. The Inter-tropical 

convergence zone (ITCZ) strongly influences the seasonal rainfall in this region, along with the southeast 

and northwest monsoons [27-29]. As a result, Kototabang has 2 peaks in the rainy season, occurring in 

March-April and November-December [20,22]. Additionally, the area exhibits a significant diurnal rainfall 

pattern, with the peak rainfall occurring in the afternoon between 1600 - 1700 Local Time (LT) [22,30,31]. 

This diurnal pattern is mainly influenced by rain migration from the west coast of Sumatra [17,18,32]. In 

addition, rainfall in Kototabang is also strongly influenced by the Madden-Julian Oscillation 

(MJO) [22,33]. Rainfall accumulation in Kototabang shows an increase when the MJO is strong and in 

phase 2 - 4, which is caused by an increase in the frequency of long-duration rainfall events.  Research on 

characteristics and mechanism of rainfall in the Kototabang and mountainous regions of Sumatra is still 

ongoing, so the availability of accurate and high-resolution surface rainfall data is needed.  

 

 Methodology 

 We conducted bias correction of ORG-based IMERG data in Kototabang for IMERG version 06 

(V06) data. The focus of the study was on bias correction of the final type IMERG data, which is considered 

to have the best accuracy over IMC due to the use of more complete data by the IMERG algorithm [24]. 

The final IMERG data was also calibrated with monthly data from the Deutscher Wetterdienst (DWD) 

Global Precipitation Climatology Center (GPCC) Full/Monitoring product [1]. By performing bias 

correction of the IMERG Final data using daily and ORG data at Kototabang, the aim was to improve 

accuracy with a more specific approach. The approach used for the IMERG and ORG data was a direct or 

point-to-pixel method, allowing for comparison with previous studies conducted at the same location [20-

22].  
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Figure 2 Monthly data availability of ORG data in Kototabang during the observation period (a), the 

number of complete monthly (b), daily (c), and hourly (d) ORG data. 

 

 In this bias correction method, the observation data from ORG is divided into 70 % calibration data 

and 30 % validation data. The calibration and validation periods can be seen in Figure 2(a). The calibration 

and validation data include complete months, days, and hours, as shown in Figures 2(b) - 2(d). Complete 

hourly and daily data are defined as ORG 1-min data without any gaps in recording, while complete 

monthly data is the sum of complete hourly data with > 90 % completeness in that month. The bias 

correction and validation are performed only on the complete hourly and daily data to avoid errors caused 

by missing recordings. The bias correction methods used in this study are linear scaling (LS), local intensity 

(LOCI), power transformation (PT), and cumulative distribution function (CDF). These methods are very 

useful for the correction of bias in precipitation data from model and satellite data processing  [11,34,35]. 

 Linear scaling (LS) method 

 The LS method is a bias correction method based on the ratio of the mean precipitation value of the 

reference data to the estimated data  [36]. In this case, the reference data used are ORG data, while the 

estimated data are IMERG data. The calibrated rainfall data is calculated by multiplying the rainfall data 

by a scaling factor calculated from the average monthly ORG and IMERG rainfall ratios. The calculation 

of the precipitation with the LS-Method can be described as follows: 

 

𝑃𝑚,𝑖
∗ = 𝑃𝑚,𝑖  . 𝑠𝑚 (1) 

 

sm =
𝜇𝑚(𝐺𝑚,𝑖)

𝜇𝑚(𝑃𝑚,𝑖)
 (2) 

 

where 𝑃𝑚,𝑖
∗  is the bias corrected data of the i-th day or era in month m, 𝑃𝑚,𝑖 dan 𝐺𝑚,𝑖 are the i-th day or era 

in month m from IMERG and ORG data, sm is the scale factor in month m, and μm is the monthly average.  

 Local intensity (LOCI) method 

 The bias correction in the LOCI method follows a similar principle as the LS method: The IMERG 

data are multiplied by a scaling factor. The difference is that the LS method first sets a threshold event 

value (Pth) that is defined as rain or not [37]. In this study, the Pth value is set based on the rain detection 

capability of the IMERG data before correction. The data transformation can be written mathematically:  

 

𝑃𝑚,𝑖
∗ = {

0, 𝑖𝑓 𝑃𝑖 < 𝑃𝑡ℎ

𝑃𝑚,𝑖  . 𝑐,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

 

where c is the scaling factor in the LOCI method calculated by the following equation:  
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𝑐 =
𝜇𝑚(𝐺𝑚,𝑖|𝐺𝑚,𝑖≥0.1)

𝜇𝑚(𝑃𝑚,𝑖|𝑃𝑚,𝑖≥𝑃𝑡ℎ)
 (4) 

 

 c values are calculated for each month and used for bias correction of daily rainfall data and the same 

ages as the LS method. 

 

 Power transformation (PT) method 

 PT method is a bias correction technique that aims to adjust the variance of the estimated data with 

the reference data [38]. The correction is done in a non-linear way in the form of an exponential which is 

written as follows:  

 

𝑃𝑚,𝑖
∗ = 𝑎𝑃𝑚,𝑖

𝑏𝑚 (5) 

 

where bm is power parameter that calculated based on the minimum value of the difference in coefficient 

of variation (CV) calculated iteratively based on daily and monthly rainfall data. The correction CV was 

calculated as follows: 

 

𝑓(𝑏𝑚) = 0 =
𝜎𝑚(𝐺𝑚,𝑖)

𝜇𝑚(𝐺𝑚,𝑖)
−

𝜎𝑚(𝑃𝑚,𝑖
𝑏𝑚)

𝜇𝑚(𝑃
𝑚,𝑖
𝑏𝑚)

 (6) 

 

where σm is the monthly standard deviation. In this study, iteration values with bm of 0.01 were used. After 

obtaining the appropriate bm value, the value of the scaling factor a was calculated based on the comparison 

of the mean value of  𝑃𝑚,𝑖
𝑏𝑚 and 𝐺𝑚,𝑖.  

 

 Cumulative distribution function (CDF) method 

 Unlike the 3 previous methods, which are based on the scaling factor of the mean value, the CDF 

method corrects the bias of the IMERG data based on the probabilistic distribution of the IMERG and ORG 

data  [39]. The step in the CDF method is to match the rainfall data values from IMERG and ORG that 

have the same cumulative probability, and then equalize them with a transformation function. The 

transformation function of the CDF method is based on the following equation: 

 

𝐶1(𝑃𝑖) =  ∫ 𝑓1(𝑃𝑖) 𝑑𝑃𝑖   (7) 

 

𝐶1(𝐺𝑖) =  ∫ 𝑓1(𝐺𝑖) 𝑑𝐺𝑖 (8) 

 

𝑓3(𝑃𝑖) =  𝐶2
−1(𝐶1(𝑃𝑖)) (9) 

 

𝑃𝑖
∗ =  𝑓3(𝑃𝑖) (10) 

 

where f1 and f2 are the probability functions of Pi and Gi, f3 is a transformation function that describes the 

relationship between Pi and Gi. 

 

 Statistical evaluation matrices 

 To evaluate the accuracy of the IMERG data bias correction method in the mountainous region of 

Sumatra, we used 6 statistical evaluation matrices that are also commonly used worldwide  [6]. The 6 

statistical evaluation matrices consist of 3 accuration tests and 3 capability of detection tests. The 3 

accuration test matrices include coeffecient correlation (CC), root-mean square error (RMSE), and relative 

bias (RB). The 3 matrices are calculated based on the following equation [40]:  

 

𝐶𝐶 =
∑ (𝑃𝑖

∗−𝑃𝑖
∗̅̅̅̅ )(𝐺𝑖−𝐺𝑖̅̅ ̅)𝑛

𝑖=1

√∑ (𝑃𝑖
∗−𝑃𝑖

∗̅̅̅̅ )2𝑛
𝑖=1 ∑ (𝐺𝑖−𝐺𝑖̅̅ ̅))2𝑛

𝑖=1

 (11) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑃𝑖

∗ − 𝐺𝑖)
2𝑁

𝑖=1  (12) 
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𝑅𝐵 =
∑ (𝑃𝑖

∗−𝐺𝑖)𝑛
𝑖=1

∑ 𝐺𝑖
𝑛
𝑖=1

𝑥100% (13) 

 

where 𝑃𝑖
∗ is the corrected IMERG data, Gi is the ORG data for evaluation, 𝑃𝑖

∗̅̅ ̅ and 𝐺𝑖̅ is mean values of  

𝑃𝑖
∗and Gi. The CC value ranges from 0 to 1, indicating no correlation (0) and perfect correlation (1). The 

best RMSE value is 0, and the larger the RMSE, the larger the average error. The best RB value is 0, while 

a negative (positive) RB value indicates an underestimation (overestimation) of the IMERG calibrated data 

with respect to the ORG observations.  

 Furthermore, the 3 matrices of the capability of detection test used are probability of deteciton (POD), 

false alarm ratio (FAR), and critical succession index (CSI). The POD, FAR, and CSI values are calculated 

based on the following equations [41]:  

 

𝑃𝑂𝐷 =
𝐻

𝐻+𝑀
 (14) 

 

𝐹𝐴𝑅 =
𝐹

𝐻+𝐹
 (15) 

 

𝐶𝑆𝐼 =
𝐻

𝐻+𝐹+𝑀
 (16) 

 

where H (hit) is the condition that calibrated IMERG data and ORG both identify a rain event (𝑃𝑖
∗ ≥ 

threshold & Gi  ≥ threshold), M (miss) is the condition that calibrated IMERG data does not identify rain 

while ORG identifies rain (𝑃𝑖
∗ < threshold & Gi  ≥ threshold), and F (false) is the condition that calibrated 

IMERG identifies rain while ORG does not (𝑃𝑖
∗ ≥ threshold & Gi < threshold). The values of the 3 detection 

capability tests range from 0 to 1. The best value for POD and CSI is 1, while the best value for FAR is 0.  

 

Results and discussion 

 Scaling factor parameterization 

 The first step in scaling-based bias correction is to determine the scaling factor parameter values of 

the IMERG calibration data and reference data. The scaling factors include the Sm parameter for LS, the a 

parameter for LOCI, and the c parameter for PT. In the LS method, the Sm value can be calculated directly 

as described in the methodology section, but in the LOCI and PT methods there are several steps. This sub-

section describes each step in determining the scaling factor values of these methods.  

 The LOCI method determines the threshold value based on the detection capability of IMERG data 

compared to ORG data during the calibration period. The POD, FAR, and CSI parameter values of IMERG 

data are analyzed with different thresholds (Figures 3(a) - 3(b)). In hourly scale, increasing the threshold 

of observed rainfall intensity decreases FAR but also decreases the POD, resulting in a trade-off between 

accurate detection and information loss. The best threshold value is determined when the decrease in FAR 

is greater than the decrease in POD, indicated by the optimum value of the CSI parameter. In this study, 

the optimum threshold value for rainfall in Kototabang is found to be 0.5 mm/h. This finding is consistent 

with the previous study that the probability density function (PDF) value of the IMERG data at Kototabang 

overestimates (underestimates) rainfall with a threshold of > 0.1 mm (≤ 0.1 mm) [21]. Therefore, this 

threshold value of 0.5 mm/h will be used as the Pth value in the LOCI method for the IMERG data in the 

Kototabang. 

 Unlike the time data, the CSI value in the daily data tends to decrease when the threshold value of 

IMERG data rainfall intensity is increased (Figure 3(b)). This decrease is primarily driven by a decrease 

in the Probability of Detection (POD) value and an increase in the False Alarm Ratio (FAR) value. The 

study uses a threshold of 0.5 mm/day as the optimum value to identify epochal rainfall events in the daily 

data. It notes that a threshold of 1 mm/day is commonly used to identify wet days and extreme weather 

events globally  [42,43]. However, in the mountainous region of Sumatra, using a threshold of 1 mm/day 

results in a slight bias due to the loss of wet days data. To avoid this bias, the study recommends using a 

threshold of 0.5 mm/day for bias correction of IMERG data with the LOCI method in Kototabang.  
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Figure 3 Monthly values of the capability of the detection parameters value and the bm parameters of the 

hourly (a and c) and daily (b and d) data for the IMERG and ORG data during the calibration period. The 

dashed vertical red line is the optimum value of CSI. 

 

 

Table 1 Values of the scaling parameters of the LS, LOCI, and PT methods for the IMERG data at 

Kototabang.  

Month 

 1 2 3 4 5 6 7 8 9 10 11 12 

Hourly 

Sm 0.557 0.667 0.693 0.752 0.894 0.951 0.680 0.837 0.745 0.749 0.869 0.846 

c 0.933 1.140 1.038 1.143 1.239 1.506 1.097 1.174 1.116 1.065 1.128 1.112 

a 0.271 0.536 0.335 0.327 0.608 0.671 0.471 0.529 0.301 0.289 0.442 0.291 

Daily 

Sm 0.570 0.751 0.696 0.715 0.906 0.931 0.704 0.789 0.737 0.746 0.845 0.795 

c 0.967 1.152 1.068 0.974 1.561 1.550 1.273 1.218 1.087 1.022 1.077 1.087 

a 0.107 0.475 0.238 0.517 0.617 0.236 0.138 0.388 0.194 0.259 0.449 0.395 

 

 

 The PT method of IMERG data with ORG data at Kototabang has a bm parameter value ranging from 

1 to 2 for both hourly and daily data. This leads to an increase in rainfall values over 1 mm and a decrease 

in rainfall values below 1 mm. While the daily and period data bm values are within the same range, the 

monthly bm values exhibit different patterns. This indicates that the difference in coefficient of variation 

(CV) between IMERG and ORG data at Kototabang varies on a monthly basis. The disparity can be 

attributed to the varying extreme values in hourly and daily scales. Extreme precipitation plays a significant 

role in the difference of mean and standard deviation values [44], which in turn affects the CV values. 

Hence, it is necessary to separately determine the exponential parameters for hourly and daily data in 

mountainous regions. 

 After defining the values of Pth in the LOCI method and bm in the PT method, the values of the scaling 

parameters can be calculated as shown in Table 1. In general, the values of the scaling parameters Sm and 

c show the same tendency, but the value of the scaling parameter a shows a different pattern. The similarity 

of Sm and c scaling parameter values is related to LOCI scaling methods, which only reduce low-intensity 

rainfall, so the average ratio generally does not change. In contrast, the PT method first reduced the variance 
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of the IMERG data before calculating the scaling factor. The reduction of the variance value can be seen 

from the value of the scaling parameter a, which is smaller than the value of Sm. However, the value of the 

scaling factor a that is less than 1 shows that the IMERG data are still overestimated compared to ORG 

after correcting the variance value with increasing values by the value of bm that is greater than 1. In contrast, 

the value of the scaling parameter c tends to exceed 1, showing that the IMERG value is smaller than ORG. 

This tendency is because the number of false events detected by IMERG is still high despite correcting the 

rain definition with LOCI.  

 

 Transfer function of CDF matching 

 In bias correction with the CDF method, several orders of polynomial fitting were performed on 

IMERG hourly and daily data with ORG data at Kototabang. Several polynomial fitting orders were tried 

to get the best order for bias correction of IMERG data in the mountainous region of Sumatra. Several 

previous studies have used various polynomial orders in the correction of SPPs data [45-47]. Therefore, it 

is necessary to determine the optimal polynomial order before performing the CDF fitting. 

 

 

Figure 4 Cumulative distribution function (CDF) of ORG, IMERG, and the results of the fitting of both 

data in several polynomial orders for the hourly scale (a) and the daily scale (b). 

 

 

Table 2 Transfer function from the IMERG data to the ORG data for polynomials of order 3 to 6.  

Degree of 

polynomial 
Transfer function 

Hourly data  

n = 2 

n = 3 

5.6 10−3 x2 + 0.2157 x − 0.1740 

6.146 10−4 x3 + 0.0484 x2 − 0.1228 x − 0.1112 

n = 4 3.208 10−5 x4 −  0.0041 x3 + 0.1336 x2 − 0.5184 x − 0.0577 

n = 5 −1.376 10−6 x5 + 2.296 10−3 x4 − 0.0126 x3 0.2523 x2 − 0.8961 x − 0.0184 

n = 6 2.936 10−8 x6 − 6.636 10−4 x5 + 5.521 10−3 x4 − 0.0206 x3 + 0.3240 x2 −1.0611 x − 0.0052 

Daily data  

n = 2 

n = 3 

−1.5 10−3 x2 + 0.0381 x − 2.1674 

−4.350 10−5 x3 + 6.193 10−2 x2 − 0.1995 x − 1.3662 

n = 4 6.906 10−7 x4  − 2.280 10−3 x3 + 0.0187 x2 − 0.4203 x − 0.8674 

n = 5 −1.612 10−8 x5 + 5.971 10−6 x4 – 7.606 10−3 x3 + 0.0381 x2 − 0.6367 x − 0.5237 

n = 6 3.755 10−10 x6 − 1.633 10−7 x5 + 2.598 10−5 x4  − 1.921 10−2 x3 + 0.0660 x2 − 0.8605 x − 0.2547 

 

 The results show that the polynomial order has a significant impact on the CDF method in the hourly 

data compared to the daily data (Figure 4). For hourly data, higher polynomial orders bring the CDF values 

of the IMERG data closer to the observed data. This finding is particularly important for bias correction in 

mountainous areas, while previous studies have mainly focused on daily IMERG data [45-47]. For the daily 
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data, different polynomial orders show varying CDF values depending on the intensity of rainfall. Lower 

polynomial orders (2 and 3) perform better at lower daily rainfall intensities, while higher orders fit better 

at higher intensities. Therefore, this study chooses to use the 6th order polynomial for both time series and 

daily data, as accurate representation of high-intensity rainfall plays a larger role in reducing bias [48]. The 

transfer function of each polynomial order in the CDF fitting is shown in Table 2. These transfer functions 

are then used for the bias correction of the IMERG data in the evaluation period. 

 

 Evaluation of bias correction method 

 Bias correction is applied to the IMERG data during the evaluation period of the ORG data, then the 

corrected data are statistically evaluated based on the evaluation matrix. The statistical evaluation results 

of the corrected IMERG data are shown in Table 3.   
 

Table 3 Statistics evaluation from different bias correction method against ORG observation during 

evaluation period.  

 CC RMSE RB (%) POD FAR CSI 

Hourly data       

IMERG 0.265 2.002 14.4 0.750 0.696 0.276 

IMERG_LS 0.265 1.949 −11.6 0.735 0.681 0.286 

IMERG_LOCI 0.263 2.053 16.3 0.591 0.563 0.335 

IMERG_PT 0.174 2.305 −17.7 0.616 0.594 0.324 

IMERG_CDF 0.215 2.180 −20.4 0.530 0.519 0.337 

Daily data       

IMERG 0.485 12.357 17.1 0.989 0.288 0.706 

IMERG_LS 0.485 11.610 −9.8 0.986 0.283 0.709 

IMERG_LOCI 0.482 12.256 13.8 0.954 0.244 0.729 

IMERG_PT 0.435 12.981 −11.1 0.953 0.246 0.727 

IMERG_CDF 0.468 12.444 −12.8 0.883 0.179 0.740 

 

 According to a study by Yusnaini et al. [20], the statistical test value of IMERG data without bias 

correction during the evaluation period shows better results compared to the entire observation range. This 

improvement is observed in the increased of CC, POD, and CSI values, both on an hourly and daily basis, 

compared to previous studies. In addition, the decreased of the RMSE, RB, and FAR also indicate better 

accuracy of IMERG data during the evaluation period. The reason for this improved accuracy is attributed 

to the use of different satellite constellations in the Tropical Rainfall Measuring Mission (TRMM)-Era and 

GPM-Era  [49]. The IMERG data utilizes TRMM observations before the launch of the GPM satellite in 

2014 to intercalibrate passive microwave observations from geosynchronous satellites. The advancements 

in sensors and algorithms on the GPM satellite have enhanced the accuracy of the IMERG data in the GPM-

Era compared to the TRMM-Era [50]. Consequently, the evaluation period data, which mainly covers the 

GPM-Era, exhibits more accurate results. 

 In the hourly resolution, the bias correction did not show any significant improvement from the 3 

accuracy tests conducted on all evaluation period data (Table 3). It shows that the LS and LOCI methods 

had no significant improvement in the CC and RMSE values compared to the original IMERG data. The 

PT and CDF methods, however, slightly decreased the CC value and slightly increased the RMSE value. 

The change in CC values in the PT and CDF methods is because both methods make adjustments that are 

not only multiplied by the scale factor. The PT method impacted the distribution of data below and above 

1, while the CDF method altered the rainfall value using a transfer function. Furthermore, the RB value 

showed that the LOCI method overestimated the data, while the other methods underestimated it. This is 

due to the scaling factor value greater than 1 in the LOCI method. In terms of the CDF method, the transfer 

function of order 6 tends to increase the percentage of light rainfall data and decrease the number of higher-

intensity rainfall events (Figure 4). Overall, the LS method was the most successful in reducing the RMSE 

and RB values compared to the original IMERG data. Therefore, the LS method is recommended for 
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improving the accuracy of hourly IMERG data in Kototabang. In general, however, bias correction of 

hourly IMERG data has not resulted in a satisfactory improvement in accuracy. The difficulty of bias 

correction of IMERG data in hourly resolution is related to the high spatial variability of precipitation in 

the mountains at short time resolutions. Rainfall of such short duration is often localized and cannot be 

detected by satellites. Therefore, other bias correction methods involving other weather parameters besides 

rainfall data are needed. 

 Contrary to accuracy test, the detection test of hourly IMERG data shows an increase in CSI values 

after calibration, indicating improved accuracy in detecting rainfall events. This improvement is supported 

by a decrease in the FAR value, although the POD value shows a slight decrease as well, indicating that 

some rain events may have been missed after correction. Among the methods used, the CDF and LOCI 

methods show the largest increase in CSI value and decrease in FAR value, suggesting that these methods 

are particularly effective in detecting low intensity rain errors in mountainous regions like Sumatra. Similar 

light rain detection errors have been found in other mountainous regions as well [51,52]. Therefore, using 

the CDF and LOCI methods can potentially enhance the detection capability of hourly IMERG data in 

mountainous areas, which is crucial for studying the diurnal pattern of precipitation frequency in Indonesian 

mountainous regions [18,22,53]. 

 

 

Figure 5 Monthly values of CC (a), RMSE (b), RB (c), POD (d), FAR (e), and CSI (f) from hourly IMERG 

data against ORG observations during the evaluation period.   

 

 

 The statistical test results of the corrected of hourly IMERG data on a monthly basis show a pattern 

similar to the overall data (Figure 5). The LS method performs best in improving accuracy, while the LOCI 

and CDF methods show the best performance in detecting capability improvement each month. However, 

an interesting observation is the significant increase in RMSE value in PT and CDF methods in December. 

The dominant increase in RMSE value in December is likely the main cause of the overall increase in 

RMSE of the PT and CDF methods (Table 3). This increase is likely due to the peak rainfall and occurrence 

of extreme rain in Kototabang [26,54], which leads to a higher variance in the data. The weak ability of 
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IMERG data to observe rain in the rainy season has also been observed in several previous studies in 

Indonesia [19,24]. Additionally, the CC value in December is the lowest, indicating reduced accuracy of 

IMERG data during the wet season. This decline in accuracy during the wet season supports previous 

research findings [20,24]. Consequently, it can be inferred that the PT and CDF methods tend to 

overestimate rainfall during the peak of the rainy season in mountainous regions.  

 

Figure 6 Monthly mean with shaded error bar values of hourly and daily rainfall from IMERG data against 

ORG observations during the calibration period (a,b) and evaluation period (c,d).   
 

 

 The monthly statistical test values reveal significant variations in the RB values of calibrated data and 

original IMERG data each month (Figure 5(c)). This is evident from the RB value of the original data, 

which fluctuates between positive and negative values. However, the RB value of the corrected data also 

exhibits irregular variations, indicating that the bias correction mechanism used during the calibration 

period has failed to address the bias in the evaluation data. Moreover, the average rainfall values and 

standard deviation of data during different calibration and evaluation periods highlight the difference in 

bias (Figures 6(a) - 6(c)). The calibration data consistently displays higher average rainfall values for 

IMERG data compared to ORG data, resulting in a positive RB value. However, during the evaluation data 

range, there are instances where the average rainfall value is lower than the ORG observation in a specific 

month. Additionally, the difference in standard deviation between the calibration and evaluation periods 

indicates distinct patterns in the data distribution. The inability of bias correction to mitigate the 

unsystematic bias in the highly variable monthly rainfall data in Sumatra’s mountainous region can be 

attributed to the complex interactions of local factors, global oscillations, and regional 

oscillations [22,26,28,30]. 

 Consistent with the time resolution data, the LS method shows the most satisfactory results in 

improving the accuracy test, while the LOCI and CDF methods show the most satisfactory results in 

improving the capability of detection test of the daily IMERG data (Table 3). However, all bias correction 

methods show success in reducing the RB value, indicating that the bias in the daily data is more systematic 

than in the hourly data. This more systematic bias is indicated by the more uniform variance value of ORG 

and IMERG daily data as shown by the distribution of standard deviation values of daily data (Figures 6(b) 

- 6(d)). However, the RB values of the monthly bias of the daily data also show diverse variations (Figure 

7). The diversity of RB values that are not always positive is consistent with the distribution of RB in the 

hourly data. The non-uniformity of daily rainfall in Kototabang led to less satisfactory results in bias 

correction compared to other regions [55-57]. Nonetheless, the constructed bias correction method can be 

evaluated with other rain gauge observations in the Sumatran mountains, where data is incomplete and 

observational duration is short [58]. Evaluation in other observation areas will further enhance the 

effectiveness of the developed method in correcting IMERG data bias in mountainous regions. 
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Figure 7 Monthly values of CC (a), RMSE (b), RB (c), POD (d), FAR (e), and CSI (f) from daily IMERG 

data against ORG observations during the evaluation period.   

 

 

 The bias correction capability was also evaluated in relation to the ability of the corrected IMERG 

data to calculate the frequency of daily rainfall occurrences with multiple rainfall thresholds. The 

determination of the number of occurrences of rainy days is very important for the determination of the 

extreme rainfall index [42]. The detection capability of corrected and original IMERG data on a daily scale 

with multiple rainfall thresholds is shown in Figure 8. In general, the POD and CSI values of all data, both 

corrected and original IMERG, show a decrease with increasing FAR. This indicates that the determination 

of the number of daily rainfall events decreases as the rainfall intensity threshold increases. The best CSI 

value of the IMERG daily rainfall data at Kototabang (CSI ≥ 0.5) is in the range of 1 - 5 mm/day. This is 

consistent with that found in southern China based on extreme rainfall with a recurrence interval of 60 

years [59]. In addition, the relatively large RMSE value of the daily data at Kototabang (~12 mm/day) 

makes it difficult to determine the specific daily rainfall intensity. This leads to inaccuracies of IMERG 

data in the determination of some extreme precipitation indices involving high precipitation intensity, such 

as number of days with rainfall ≥ 50 mm/day (R50mm) and daily maximum rainfall (RX1day) 

indices [21,23,60]. However, previous research shows that the IMERG data at Kototabang can still capture 

the probability density function (PDF) of rainfall well  [21]. In addition, the tendency of IMERG to 

underestimate high-intensity rainfall may also be the reason for the decrease in CSI values at such high 

rainfall intensities [61-63]. 
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Figure 8 The values of POD (a), FAR (b), and CSI (c) from daily non-corrected and corrected IMERG data 

against ORG observations during the evaluation period.   

 

 

 Although all corrected and original IMERG data show the same detection trend, each method shows 

different POD, FAR and CSI values for each threshold (Figure 8). All methods show better CSI values at 

a threshold of 1 mm/day compared to the original IMERG data. This indicates that all methods used can 

improve the accuracy of IMERG data in observing the number of rainy days (R1mm), consecutive wet days 

(CWD), and consecutive dry days (CDD) indices. These 3 indices are very important in observing extreme 

rainfall indices, which are closely related to hydrometeorological disasters in Indonesia [2,64,65]. 

Furthermore, the LOCI method shows a trend that does not change the value of the 3 detection tests 

compared to the original IMERG data from a threshold of 1 - 50 mm/h. This indicates that the high CSI 

value in the LOCI method is only caused by the reduction of FAR at intensities below 0.5 mm. On the other 

hand, the CDF method shows a lower FAR value compared to the original IMERG < 50 mm/day. However, 

the low FAR value of the CDF method is followed by a lower POD value compared to the original IMERG 

data, so the CSI value of each threshold is not very satisfactory. Nevertheless, the CSI values of the LOCI 

and CDF methods show the best value at the threshold of 40 mm/day, which is often the threshold of 

extreme rainfall in Indonesia  [66,67]. Thus, the LOCI and CDF methods remain a recommendation for 

improving the accuracy of extreme rainfall index observations because they can improve the accuracy of 

identifying rainy days (R ≥ 1 mm/day) and extremes (R ≥ 40 mm/day). 

 

Conclusions 

 The bias-corrected IMERG data at Kototabang based on long-term observation of the optical rain 

gauge (ORG) shows improved accuracy and detection capability. Improvements depend on the temporal 

resolution of the data and the method used. In general, daily data is better corrected than hourly data. The 

best accuracy improvement is observed in the Linear Scaling (LS) method, as indicated by a decrease in 

the Root Mean Square Error (RMSE) and the Relative Bias (RB) compared to the original IMERG data. 

However, the accuracy improvement is not clearly observed in the bias correction of IMERG hourly data. 

On the other hand, the local intensity (LOCI), power transformation (PT), and cumulative distribution 

function (CDF) methods show a good ability to improve the rain detection capability of IMERG. The 

improved detection capability of these 3 methods is observed from the better critical succession index (CSI) 

values compared to the original IMERG data. The success of the 3 methods in improving the rain detection 

capability is due to the reduction of the false alarm ratio (FAR) values for rain with intensity < 2 mm. The 

improvement in rain detection of the IMERG data is also relatively satisfactory for the hourly data at 

Kototabang, especially for the LOCI and CDF methods. In addition, the CDF method also shows more 

satisfactory results for rainfall detection with thresholds ≥ 1 and ≥ 40 mm/day, so it is highly recommended 

to be applied to IMERG data before performing extreme rainfall analysis. Therefore, combining the LS, 

LOCI, and CDF methods on IMERG hourly and daily data will improve weather and climate analysis in 
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the mountainous region of Sumatra. Although this study was conducted for one observation in Kototabang 

only, this correction method can also be applied in other mountainous regions. However, future research is 

needed to test the accuracy of the bias correction method on IMERG data in mountainous areas with 

multiple rain gauge observations in one IMERG data grid. 
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