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Abstract  

 Preliminary research on physicochemical and water quality in the Beris dam shows that the water 

catchment area has the best standards and quality during the observation of the wet season and dry season 

mainly in the northern states of peninsular Malaysia. The analysis of water quality assessment using the 

DOE-WQI and Carlson Trophic State Index (CTSI) resulted that during the dry season (February), the 

average DOE-WQI reading is 88 or Class II; while during the wet season, the average DOE-WQI reading 

recorded 87.1 (October). Although the CTSI score was 34.2 - 27.0 during wet season and dry season, both 

seasons were classified as oligotrophic conditions. Some physicochemical parameters also show a high 

correlation between them and indicates minor water quality issues. The use of more efficient interpolation 

techniques in water quality studies also reinforces the evaluation of water quality. As a reference point for 

future water research, GIS interpolation application methods can be more effectively and efficiently used 

with Inverse Distance Weighted (IDW), Ordinary Kriging and Spline techniques. 

Keywords: Physicochemical, Water quality index, Carlson trophic state index (CTSI), Interpolation, IDW, 

Kriging, Spline, Correlation 

 

Introduction 

 Literature review 

 Over the past decades, lakes around the world have been the focus of environmental research because 

of their wide variety in terms of origin, geographical distribution, hydrological regimes and substrate 

variables. Water quality includes a range of abiotic and biotic variables associated with the environment 

[1]. Abiotic variables are often the controlling forces of the environment, influencing organism well-being, 

distribution, and ecosystem functioning. [2]. Water quality is affected by changes in urbanization, 

industrialization and agriculture. The physicochemical characteristics of water and biological variety are 

essential to the maintenance of a healthy environment. [3]. Physical properties of lake water such as 

temperature, light intensity, transparency, pressure, conductivity, and water current, as well as chemical 

properties such as levels of carbon dioxide, dissolved oxygen, pH, hardness, alkalinity, phosphate, nitrate 

levels and highly govern aquatic life determines the trophic status of the water body. 

 Land-use activities surrounding the lake boundaries resulted in the lake’s water quality deterioration. 

Many organic and inorganic pollutants cause eutrophication in lakes and streams, harming the biological 

system and contributing to the deteriorate of water quality. Such scenario offers significant health risk 

impact on humans [4]. Analysis of water quality parameters is essential for frequent monitoring and 

understanding of the environmental condition of water resources [5]. In Malaysia, the National Water 

Quality Standard (NWQS) is proposed as the water quality baseline for preserving and managing surface 

water, particularly rivers and lakes. The river and lakes’ Water Quality Index (WQI) was derived by 

integrating 6 water quality parameters, namely dissolved oxygen (DO), biological oxygen demand (BOD), 

total suspended solids (TSS), pH, chemical oxygen demand (COD) and ammoniacal nitrogen (AN)as 

suggested by [6]. 

 Carlson’s Trophic Status Index (CTSI) is a commonly used method for evaluating the trophic 

condition or overall health of a lake. This procedure utilizes Secchi’s disc transparency, chlorophyll-a, and 

phosphorus measurements. The whole weight of the biomass of a body of water at a particular place and 

time is called the tragic state [7,8]. Previous scholars who studied on some analytical analysis such as 
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Principal Component Analysis (PCM) and a regression model is widely used to determine physicochemical 

and heavy metal in water quality assessment [9,10].   

 Meanwhile, GIS does provide possible solutions to environmental issues, such as water quality 

assessment and indexing. Interpolation methods in GIS enables to predict (z-values) or attributes at 

sampling stations at the point of location (x and y values) by using a Geostatistical Analysis Approach [11]. 

Within GIS software, interpolation methods such as Inverse Distance Weighting (IDW), Kriging and Spline 

are frequently used to estimate and forecast values when a variable is distributed over space or time. 

Interpolation techniques offer ease on sample data implementation by regions and fits on the spatial trends. 

IDW is widely used for surface interpolation analysis, especially for water quality analysis [12,13]. 

However, the nature of IDW, Kriging and Spline methods offer various calculation methods to define 

“average” values by depending on the nearest neighbor values. It is necessary for scholars to verify the 

influences of different interpolation techniques to determine accurate trophic condition of a lake.  

 This paper discusses the significance of studying lakes for environmental research due to their diverse 

characteristics and the influence of abiotic variables on the ecosystem. It highlights the impact of human 

activities, such as urbanization and industrialization, on the water quality of Beris Dam, Kedah. The 

National Water Quality Standard (NWQS) in Malaysia is proposed as a baseline for managing surface water 

quality. The Carlson Trophic Status Index (CTSI) and water quality parameters like dissolved oxygen and 

pH are used to evaluate lake health. Analytical methods such as correlation are employed for water quality 

assessment. GIS based interpolation methods of IDW, Kriging and Spline were utilized to predict variation 

of spatial trends in water quality.  

 

Materials and methods 

 Study area 

 Beris Dam (Figure 1) is a water reservoir located in the Sik District of Kedah, Malaysia. The dam is 

a rockfill dam with a concrete face located in a small valley along the Beris River, 1.6 km upstream from 

the river’s confluence with the Muda River. Beris dam is fed by 2 major rivers, Sungai Beris and Sungai 

Batang, which provide an average of 114 million m3 of water to the dam site annually. This lake is located 

24 km from Pekan Sik, 90 km distance from Alor Setar. Sungai Beris originated from Batu Seketol and 

Kampung Paya, whereas Sungai Batang originates from Sungai Batang. 

 

 

Figure 1 Sampling station at Beris Dam. 
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 Data acquisition and method 

 A 2-season water sample was collected in October 2020 and February 2021 to reflect a 2-season wet 

and dry monsoon season in Peninsular Malaysia. The sample for all 10 sampling locations was collected 

during morning time. It is due to the possible water quality might also deteriorated by temperature to 

influence results of water parameter analysis such as dissolved oxygen and conductivity [14,15]. The 

sampling approach employed in this investigation was manually pumping water via a hose with a surface 

water sample obtained at the range of 20 - 50 cm below the water surface. Water is collected in a 

polyethylene bottle and maintained at 2 - 4 °C using a cooler and gel packs to maintain water quality. The 

water is then delivered to the lab within 24 h and is examined by the APHA. 

 In-situ pH, salinity, temperature, conductivity, turbidity and dissolved oxygen data were measured 

with a multi-probe AZ Instrument 86031 Water Quality and turbidity meter Sinotester LH-TB01 Turbidity 

Meter by the APHA Standard shown in Figure 2. Water samples were analyzed following APHA 2550 for 

Temperature, APHA 4500-O OXYGEN (Dissolved oxygen), APHA 4500-H+ for pH Value, APHA 2130 

B for Turbidity, APHA 2540 for Total Suspend Solids and Total Dissolve Solids [16,17] . 

 All lab-need samples were analyzed by MUPA USM and the Department of Chemistry Malaysia. 

Total phosphorus (TP) was analyzed by methods complying with APHA-4500-P. Chlorophyll-a (CA) were 

extracted with acetone absorption using UV-Spectrophotometer. For water transparency, for each sample 

site, a Secchi disc is utilized to recognize the visibility of lake water. 

 

 

Figure 2 Equipment used in beris dam in-situ observation. 

 

 DOE water quality index 

 The Water Quality Indicator (WQI) is a numerical index based on essential factors such as pH, 

turbidity, temperature, conductivity, dissolved oxygen, total dissolved solids, total suspended solids and 

other chemical parameters in water [18-21]. This index is also utilized as a reference guideline in the 

Ministry of Health Malaysia’s National Water Quality Standard (NWQS) and National Drinking Water 

Standard (NDWQS) [22]. These characteristics were then used to generate the water quality index, which 

was based on the Eq. (1): 

 
DOE-WQI = (0.22×SIDO) + (0.19×SIBOD) + (0.16×SICOD) + (0.15×SINH3N) + (0.16×SITSS) + (0.12×SIpH)   (1) 
 

where: WQI: Water Quality Index 

    SIDO: Sub-Indices Dissolve Oxygen 

    SIBOD: Sub-Indices Biological Oxygen Demand 

    SICOD: Sub-Indices Chemical Oxygen Demand 

    SINH3: Sub-Indices Ammonia Nitrate 

    SITSS: Sub-Indices Total Suspend Solids 

    SIpH: Sub-Indices Acidity and Alkalinity 

 

 Carlson trophic state index (CTSI) 
 The Carlson Trophic State Index (CTSI) refers to one numerical index to categorize lake 

eutrophication. The trophic index was defined as oligotrophic if the values were less than 40 and 

mesotrophic if the values ranged between 40 to 50. Values of 50 to 70 are considered eutrophic, whereas 
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70 or more is deemed to be hypereutrophic [24]. This calculation incorporates 3 in-situ and lab-measured 

data, including chlorophyll-a (CA), total phosphorus (TP) and Secchi disc (SD). 

 In a water sample, total phosphorus is present as orthophosphate, condensed phosphate, organic 

phosphate in solid and liquid forms. The SD or Secchi disc employs a black-white circular disc with a 20 

cm diameter to evaluate water transparency. When the disc is no longer visible, it is submerged to measure 

visibility. Next, Chlorophyll-a (CA) is an algae-containing chlorophyll that absorbs sunlight for energy and 

photosynthesis. The values were derived from equation TSI (SD), TSI (TP), and TSI (CA) [8,25]. Eqs. (2) 

- (5) are listed below: 

 

TSI for Chlorophyll-a (CA) TSI = 9.81 Ln Chlorophyll-a (ug/L) + 30.6              (2) 

 

TSI for Secchi depth (SD) TSI = 60-14.41 Ln Secchi depth (Meters)              (3) 

 

TSI for Total phosphorus (TP) TSI = 14.42 Ln Total phosphorous (ug/L) + 4.15                     (4) 

Carlson’s TSI (CTSI) = [TSI (TP) +TSI (CA) +TSI (SD)]/3                                                   (5) 

 
*BOLD replaces observation data 

 

 Spatial interpolation techniques 

 A wide variety of methods, models and interpolation approaches rely on essential characteristics of 

the quality of the results. Many of these procedures and strategies have previously been developed and 

widely utilized to produce satisfactory results [26]. Spatial interpolation methodologies are influenced 

separately by factors such as sampling or sample density. Interpolation based on sampling of every 10 m is 

more accurate than a sampling distance of 50 or 100 m which delivers 50 and 70 % fewer sampling units, 

respectively, and sampling density affects each interpolation methodology differently [27-29]. Given 

surface heights or (z point) at any given instant (x and y point) are governed by just one variable Eq. (6), 

and the position is related to the known (z point) value, spatial interpolation considers univariate [30]. 

 

Z x, y = f (x,y)                        (6) 

                                                                                                                                     

 Point-based and line-based interpolation areas are both used for interpolation of the surface. The 

difference between them is the character of the results received. Point-based interpolation obtains cover 

with very different patterns of local parts of the surface. For example, kriging method and spline, IDW 

more specifically as line-based interpolation techniques [31]. 

 

 Inverse distance weighting (IDW) 

 IDW method is a popular method of interpolation in geographical analysis. This approach uses a set 

of linear weighted sample points for the calculation of cell values. More weight will be put on the points 

closest to the target location. The IDW technique can be improved by removing the pre-set size of the 

“search radius” and focusing on several linked measurement locations [32]. The inverse-distance-weighted 

approach uses a weighted linear combination of a set of sampled points to calculate values for non-sampled 

sites [33,34]. The weight is a function of the inverse distance multiplied by any mathematical exponent. 

The space rises, the weight falls, and the more outstanding exponent’s drop becomes more intense [35]. In 

order to carry out spatial interpolation of water quality, ArcGIS 10.8 software was used to complete all 

interpolation computations. 

 

 Spline 

 Spline estimates values by minimizing total surface curvature, producing a smooth surface that 

reliably passes across the input locations. The spline stretching effect helps estimate values below and above 

the lowest and maximum recorded in the data set. As a result, the Spline interpolation approach is ideal for 

predicting high and low values not included in the sample data [36]. The Spline surface interpolation 

formula is employed in the procedure as in Eq. (7) below: 

 

S (x, y) = T (x,y)  ljR rj N j=I                                                             (7) 

 

Description: S: Interpolation point 

     j: 1, 2, and (n) 

    N: number of samples 
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    lj: Coefficient found in the linear equation system 

    rj: the distance between (x,y) and another JT point 

 

 T(x,y) and R (r) are defined differently depending on the choice. All regions of the output raster are 

separated into equal size chunks for calculation reasons. The number of features in the x and y axes equals 

the number of elements in the square form. The component number is derived by dividing the number of 

issues by the number of points entered. These sections may substantially differ in the number of dots, 

resulting in approximate values for data with a less uniform distribution. 

 

 Kriging 

 Kriging is a geostatistical interpolation strategy that utilizes the distance and degree of variation 

between known data points when estimating values in unknown places. A kriging estimate is a weighted 

linear grouping of known sample values centered on a calculated endpoint. Masses are evaluated for each 

interpolated point based on the spatial structure of the interpolated position of all sampled points [37,38]. 

The implications are calculated using the variogram produced on the data’s spatial system and applied to 

the tested spots using Eq. (8) below: 

 

                  (8)

                           

where the value of the projected point (z-hat, at location x-naught) equals the total of the importance of the 

independently sampled point (x, at the position I multiplied by that point’s unique weight (lambda, for 

location, its tries to decrease the error variance and adjust the mean of the prediction errors to zero so that 

there are no over-or under-estimations [39]. Kriging has various subtypes, such as conventional kriging, 

universal kriging, block kriging, cokriging, Poisson kriging, spherical kriging, etc. 

 The Kriging technique may create a semi-variogram of the data to weigh close sample points while 

interpolating. It also allows users to comprehend and model their data’s directional (e.g., north-south, east-

west) patterns. Kriging differentiates itself by measuring the error at each interpolated point, providing a 

measure of confidence in the presented surface [38,40]. 

 

Results and discussion 

 

 Water quality index (WQI) of beris dam 
 All sub-index were calculated and determined into WQI per sampling station and season. Wet season 

sampling in October 2020 represents Northeast Monsoon and dry season sampling in February 2021 

represents during Inter-monsoon changes that happens in the north region of West Malaysia [23]. The 

assessment using the DOE-WQI index is conducted because it is the most suitable index considering the 

weather and environmental factors in Malaysia, which experiences a hot and humid climate throughout the 

year. The DOE-WQI assessment is widely used by water suppliers across the country to test the water 

quality in real-time, ensuring that the water quality remains satisfactory before entering and after treatment 

in water treatment plants. The WQI index is also continually adjusted by researchers by incorporating new 

or additional parameters to align with the specific water studies they are conducting. 

 Tables 1 and 2 shows a DOE-WQI score calculated from the equation for every sampling station in 

Beris dam during wet and dry season respectively. 

 

Table 1 Physicochemical parameter observed during wet season and WQI calculation.  

Physicochemical 

parameter 
SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 

pH 
pH 8.6 7.75 7.66 7.68 7.74 7.23 7.72 7.65 7.5 7.51 

SIpH 80.18199 94.22188 95.19662 94.988 94.335 98.50095 94.5577 95.2989 96.6875 96.6034 

TSS 

(mg/L) 

TSS 13.4 11.4 10.5 10.9 11.3 12.4 10.2 10.4 9.3 10.3 

SITSS 89.72626 90.83849 91.34435 91.11911 90.8945 90.28033 91.5137 91.4008 92.0241 91.4572 

DO 
DO (mg/L) 8.4 8.4 7.7 7.4 7.9 5.9 7.2 7.4 7.3 6.3 

SIDO 100 100 100 100 100 85.65788 100 100 100 94.4957 



Trends Sci. 2024; 21(4): 7333   6 of 16  

Physicochemical 

parameter 
SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 

DO DO (%) 108.948 108.948 99.869 95.978 102.463 76.5623 98.64 101.38 100.1 86.31001 

NH3-N 
NH3-N 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

SINH3-N 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 

BOD 

BOD 

(mg/L) 
12.4 8.5 8.8 9.4 14.3 5.8 7.5 6.6 7.8 7.2 

SIBOD 53.36532 66.81921 65.68182 63.46114 47.7571 79.682 70.7453 74.4633 69.5453 70.9647 

COD 

COD 

(mg/L) 
24.2 18.3 16.8 17.9 19.7 14.6 16.2 14.6 10.6 15.6 

SICOD 69.47395 74.761 76.756 75.293 72.899 79.682 77.554 79.682 85.002 78.352 

Temp °C 29.8 29.4 29.8 30.1 30.3 29.6 31.1 32 32.3 31.7 

WQI 82.0 87.3 87.6 86.8 83.4 87.4 88.6 89.7 89.9 88.0 

CLASS Class II Class II Class II Class II Class II Class II Class II Class II Class II Class II 

 

Table 2 Physicochemical parameter observed during dry season and WQI calculation. 

Physicochemical  

parameter 
SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 

pH 
pH 8.9 7.86 7.33 7.48 7.24 7.65 7.72 7.65 7.5 7.51 

SIpH 69.31961 92.89742 97.93215 96.85208 98.4495 95.29887 94.5577 95.2989 96.6875 96.6034 

TSS (mg/L) 
TSS 16.5 12.4 11.6 18.5 11.3 13.9 12.4 13.2 10.4 10.4 

SITSS 88.03442 90.28033 90.72652 86.96329 90.8945 89.45077 90.2803 89.8368 91.4008 91.4008 

DO 
DO (mg/L) 10.4 7.9 7.9 8.9 8.6 8.1 8.4 9.2 8.2 8.3 

SIDO 100 100 100 100 100 100 100 100 100 100 

DO DO (%) 134.888 108.23 108.23 121.93 117.82 105.057 115.08 126.04 112.34 113.71 

NH3-N 
NH3-N 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

SINH3-N 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 

BOD 
BOD (mg/L) 10.3 6.7 7.8 8.4 9.9 6.6 7.9 7.2 7.8 7.8 

SIBOD 60.26089 74.04129 69.54527 67.20242 61.6642 74.46333 69.1495 71.9647 69.5453 69.5453 

COD 
COD (mg/L) 22.1 16.2 15.5 16.5 21.2 14.6 16.2 14.6 10.6 10.6 

SICOD 71.91914 77.554 78.485 77.155 72.9911 79.682 77.554 79.682 85.002 85.002 

Temp °C 30.2 31.4 31.3 31.5 31.4 30.9 31.1 32.4 31.9 31.3 

WQI 82.1 88.8 88.8 87.4 86.5 89.4 88.1 89.0 89.8 89.8 

CLASS Class II Class II Class II Class II Class II Class II Class II Class II Class II Class II 

 

 

 In-situ data obtained during both the wet and dry seasons, consisting of pH, TSS, DO, NH3-N, BOD, 

COD, and water temperature, are calculated for their sub-indices using the DOE-WQI formula. During the 

wet season, pH readings show relatively minor differences compared to the dry season, except at SP1 where 

higher alkalinity readings are observed compared to other stations. 

 This factor originates from the nearby inflow of a river tributary from the dam, which has the potential 

to carry pollutants with a higher alkalinity content than the surrounding area. TSS, BOD, and COD readings 
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also indicate that Station SP1 has a higher range in both seasons, which correlates with the mentioned river 

tributary’s flow. However, the calculation of DOE-WQI indicates that the water quality at all sampling 

stations falls under Class 2, where the water can be used for recreational purposes, fish farming, agricultural 

irrigation, and domestic use with minimal treatment for human consumption. 

 

 Carlson trophic state index (CTSI) of beris dam 

 In the case of DOE-WQI index for Beris Dam, CTSI values for dry season and wet season are not 

significantly different. All sampling stations between 2 seasons scored index values below 40, which shows 

a trophic class Oligotrophic. As a water dam supply, the Beris Dam is not contaminated by heavy metals, 

and all physicochemical are still in the permissible range guided by NLWQS [18]. Table 2 shows CTSI 

score per sampling station measured during the wet season and dry season in Beris Dam, while Figure 3 

represents the comparison graph of CTSI index for wet and dry season.  

 

 

Table 3 CTSI index for Wet and Dry Season. 

Sampling stations CTSI index (Wet) CTSI index (Dry) 

SP 1 31.3 34.2 

SP 2 26.4 29.4 

SP 3 29.3 28.1 

SP 4 27.5 29.2 

SP 5 28.0 29.4 

SP 6 31.6 34.0 

SP 7 26.5 27.8 

SP 8 28.9 27.2 

SP 9 27.3 27.0 

SP 10 27.2 29.9 

 

 

 

Figure 3 CTSI index for beris dam during wet and dry season. 
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 Correlation matrix physicochemical wet and dry 

 Pearson’s correlation matrix was developed between analyzed physicochemical parameters and 

presented in wet and dry data as depicted in Figures 4 and 5. A highly positive correlation in the wet season 

(p < 0.99) was noticed between Salinity and Total Dissolve Solids (TDS) and Chloride. Total suspended 

solids (TSS), fluoride and turbidity are also strongly correlated (p > 0.80). TSS increases the turbidity of a 

body of water, which reduces the penetration of light and therefore inhibits the photosynthetic activities of 

aquatic plants, which may result in oxygen deprivation [41]. 

 

 

 
Figure 4 Correlation matrix physicochemical for wet season. 

 

 In the Dry season, Chlorophyll-a shows a high correlation between Total Dissolve Solids (TDS), 

Turbidity, and Chloride (p > 0.80). The similarity between dry and wet seasons, turbidity also has a high 

correlation between Total Dissolve Solids (TDS) and Chloride (p > 0.80). For lake water, all results are not 

significantly different between seasons because a lake is not the same as a river in which the river also 

constantly changes and flows out to the other source [42]. 
 

 

 
Figure 5 Correlation matrix physicochemical for dry season. 
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 IDW vs Kriging vs Spline 

 Figures 6 - 17 displays index data from DOE-WQI, CTSI and 2 physicochemical datasets from dry 

seasons. The dry season data sets sample were selected, tested and elaborated to visualize differentiation of 

interpolation map representation using IDW, Kriging and Spline approach. The interpolation map was 

generated and processed using ArcGIS 10.8 software. The minimum, maximum, mean, and standard 

deviation values were derived using the spatial analyst tool in ArcGIS 10.8 as stated in Table 4. This 

analysis compares the 3 interpolation methods using the same index data and selected physicochemical data 

to assess their suitability for water quality assessment.  

 

 

Table 4 Statistical comparison of interpolation analysis using different IDW, Kriging and Spline methods. 

 

 

 Using a 3-interpolation approach, we can demonstrate that Spline interpolation is suitable for 

predicting high and low-value data not included in the sample data. For DOE-WQI index data and CTSI, 

with slight differences between the minimum and maximum value, IDW is the most accurate method to 

interpolate all point data, resulting in a small standard deviation value. For example, the IDW interpolation 

techniques for DOE-WQI Dry index is s = 0.95 compared to the Spline method’s s = 2.49. 

 A similar pattern is observed for CTSI Dry Index, where the IDW method shows standard deviation 

values of s = 1.4, whereas the Spline method shows s = 3.63. However, for Ordinary Kriging (OK), the 

standard deviation values are s = 0.00 for DOE-WQI Dry index and s = 1.41 for CTSI wet index. When 

assessing interpolation techniques based on their standard deviation score indicates the best technique for 

presenting data.  

 For the selected physicochemical data, such as pH and water temperature, the Spline method showed 

the highest standard deviation score among all methods. The standard deviations were s = 0.37 when 

compared with IDW and OK for the Dry pH season. This clearly indicates that the Spline method is weak 

when dealing with small range data and fewer sampling points. It is suitable for determining both 

physicochemical data and any water quality index data. 

 

Method/Figure Min Max Mean S.D 

DOE-WQI Dry Point Data 82.12 89.8 87.98 2.31 

Figure 6: IDW WQI Dry 82.1 89.80 88.24 0.95 

Figure 7: Ordinary Kriging WQI Dry 87.97 87.97 87.97 0 

Figure 8: Spline WQI Dry 74.46 105.27 88.68 *2.49 

CTSI Dry Point Data 27.0 34.2 29.6 2.55 

Figure 9: IDW CTSI Dry 27 34.2 29.18 1.4 

Figure 10: Ordinary Kriging CTSI Dry 27.02 34.15 29.23 1.41 

Figure 11: Spline CTSI Dry 18 40.46 28.84 *3.63 

Physicochemical (pH) Dry Point Data 7.24 8.9 7.684 0.464 

Figure 12: IDW pH Dry 7.24 8.9 7.68 0.2 

Figure 13: Ordinary Kriging pH Dry 7.25 8.87 7.68 0.14 

Figure 14: Spline pH Dry 6.96 9.97 7.68 *0.37 

Physicochemical (Water Temp) Dry Point Data 30.2 32.4 31.34 0.579 

Figure 15: IDW Water Temp Dry 30.20 32.40 31.47 0.35 

Figure 16: Kriging Water Temp Dry 30.28 32.36 31.50 0.36 

Figure 17: Spline Water Temp Dry 28.48 33.58 31.62 *0.87 
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Figure 6 IDW WQI dry. 

 

    
Figure 7 Ordinary Kriging WQI dry. 

 

 

    

Figure 8 Spline WQI dry. 

 

 

 Using the DOE-WQI index data, testing was conducted only on the dry season data. Interpolation 

testing was performed using the IDW method, Kriging method, and Spline method, which are the most 

popular approaches in spatial interpolation. Based on the data, the DOE-WQI values range from 0 to 100. 

The Spline method in Figure 8 shows that the predicted data fall outside the established range of the DOE-

WQI, reaching the highest value of 105.2. However, for the IDW and Kriging methods, the respective index 

scores still fall within the index range even after the data has undergone interpolation processes. 
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Figure 9 IDW CTSI dry. 

 

    

Figure 10 Ordinary Kriging CTSI dry. 

 

    

Figure 11 Spline CTSI dry. 

  

 This also applies to the dry season CTSI data, where the Spline on Figure 11 method demonstrates 

less satisfactory interpolation performance. Due to the CTSI data for the 10 sampling stations hovering only 

between 27 and 34, it cannot establish a broader range on the map legend. Consequently, the interpolation 

map will appear to have more uniform contouring compared to using a larger data range. 
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Figure 12 IDW pH dry. 

 

    

Figure 13 Ordinary Kriging pH dry. 

 

 

    

Figure 14 Spline pH dry. 
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 The monitoring of pH data in Figures 12 - 14 using all 3 interpolation methods also shows that low-

range pH data exhibit small standard deviation values when interpolation analysis is performed. This is 

because the maximum displayed pH data is 8 and the minimum is 7, making the data harder to interpolate 

and the values involved are assessed to a smaller decimal. This also indicates that all 3 interpolation 

methods are not suitable for use when the data has a very small range gap. 

 

 

Figure 15 IDW water temp dry. 

 

 

Figure 16 Ordinary Kriging water temp dry. 

 

 

Figure 17 Spline water temp dry. 
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 For interpolation methods on temperature data, the performance of the IDW and kriging methods 

shows that the range of temperature observations for the dry season is still within the range of variation. 

However, the spline method still exhibits characteristics of being ‘out of range’, where 32.4 degrees Celsius 

is the highest temperature recorded at SP8, and the lowest is 30.2 degrees Celsius, while the spline method 

provides a maximum interpolation range reading of 33.58 degrees Celsius, differing by 1.18 degrees Celsius 

from the maximum temperature value in that dry season. 

 

Conclusions 

 Beris dam, in terms of DOE-WQI, exhibits the best water quality in both seasons, with an index score 

of more than 80 to 100 for all sampling points. This categorizes the water as Class II, requiring conventional 

treatment only for daily use. The Carlson Trophic State Index (CTSI) also indicates that the water is in an 

oligotrophic status, with a CTSI score ranging from 27 to 35. Meeting all criteria as fresh water suitable for 

human activity, thus indicates better water quality without any issues. For correlation assessment, it is 

evident that the levels of suspended solids and dissolved solids play a significant role in the presence of 

fluoride and the increase in turbidity levels due to their high correlation values, in addition to the presence 

of chlorophyll-a in the water. Each of these physicochemical parameters is often closely linked to pollution 

and the decomposition of organic materials in the water. 

 The study compares 3 methods of spatial interpolation. Among them, IDW stands out as the best 

interpolation technique for analyzing water quality assessment and numerous other indexes and 

physicochemical data, regardless of whether the observation data is on a small or large scale. IDW’s linear-

weighted ability, along with the capacity to eliminate the “search radius,” effectively reduces most errors 

and enhances its ability to relate to the nearest point. However, the spline method seems unsuitable in this 

case because it provides interpolation values that fall outside the range of the original data. This may be 

due to the characteristics of splines, which attempt to generate piecewise functions that can result in 

significant gaps between known data points. This might not be suitable for temperature data, which should 

ideally fall within a specific range. The Spline method requires a larger number of sampling data points 

and an extensive range of data reading to provide a satisfactory and appealing result for interpolation 

analysis. Both ordinary and universal kriging also benefit from having more sampling points, as it helps 

reduce interpolation errors and improves the accuracy of zero values interpolation points. This research 

also highlights that spatial interpolation is the optimal analysis method that should be employed to visualize 

water quality assessment. It is also the easiest method for researchers and water management planners to 

understand. 
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