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Abstract 

         Despite the importance of Nickel Oxide (NiO) in diverse functional applications, very little 
information is available on the mechanical properties of bulk or porous NiO or, mostly unnoticed. In 
this study, porous Ni-NiO foam was synthesized using space holding-powder metallurgy and sintering 
methods to produce opened-cell structure with macrogravel and Neolamarckia cadamba (Cadamba 
flower) like surface morphology. Four different types of porous Ni-NiO with different pore diameter of 
35.65 ± 12.77, 36.10 ± 8.85, 68.20 ±7.36 and 62.45 ± 17.48 µm were fabricated for evaluating the 
effect of porosity on the mechanical properties of bulk porous Ni-NiO foam. The mechanical properties 
such as bulk crushing force of as synthesized Ni-NiO foam with various porosities such as 20.55, 
27.35, 27.85 and 28.82 % exhibited the average crushing load of 115.40, 39.95, 138.10 and 151.20 N, 
respectively. This study suggests that crushing load of Ni-NiO foam is not only depending on the 
porosity but also on the sintering temperature and crystallite sizes of NiO.  
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Introduction 

Cellular metals and metallic foams are metals with pores deliberately integrated in their structure. 
Due to their unique properties metal foams are used as an attractive material [1]. However, these 
materials are usually exposed to various mechanical loading stresses. Therefore, it is needed to 
understand how these porous structures behave under these mechanical stresses to design materials that 
show adequate properties for the required application [2,3]. There are several metal foam studied [4-10] 
for their uniqueness features such as exceptional uniformity, light weight, high porosity, intrinsic strength, 
corrosion resistance and good electrical and thermal conductivity. However, most of the cases mechanical 
properties of respected metal oxides (MOs) of these metals were ignored. In the past few decades, porous 
NiO foams attracted increasing attention in numerous functional applications such as electrodes of 
supercapacitior [11-13], gas sensors [14-16], an electrode of lithium-ion batteries (LIBs) [17-20], 
electrocatalyst for electrochemical water splitting application [21-23], and automotive glass [24]. 
However, despite the significant importance of NiO in the diverse functional applications, surprisingly no 
systematic investigation on the mechanical properties of bulk or porous NiO has been reported. 
Therefore, the important and extensive opportunities and need for this porous NiO foam in the field of 
energy and various industries are illustrative of the imperative driving forces for understanding the effect 
of structural porosity on the mechanical properties. It is noted that a deep understanding of mechanical 
properties and reliability of bulk porous NiO is necessary even in cases where it is used as functional 
materials such as electrodes of various energy storage systems. Riley et al. investigated the mechanical 
[25] and electrochemical properties [26] of electrodes of lithium ion batteries(LIBs) and indicated that the 
enhanced electrochemical performance was found to be a result from the 50 % increase in hardness of 
electrode materials. Rahman et al. studied the nanogravel structured Ni-NiO foam as electrode for LIBs 
and indicated that better discharge capacity was observed due to increase in hardness of anode materials 
[19,20]. Hence, not only the electrochemical stability is essential for functional applications but also the 
mechanical stability of Ni-NiO foam is essential as well. For an instance, the mechanical properties of 
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porous Ni-NiO foam should decrease when porosity is increased which led to improved electrochemical 
performances due to increase in surface area. In contrast, electrochemical performances decrease when 
decrease in porosity which led to mechanical stability under load-bearing conditions increases. Hence, an 
optimum combination porosity and mechanical property of porous Ni-NiO foam is necessary depending 
on its application as functional materials. 

In this study, authors fabricated macrogravel and Neolamarckia cadamba (Cadamba flower) 
structured macroporous Ni-NiO foam using powder metallurgy technique and space holding material. The 
porous characteristics, surface morphology, and crystallite sizes of as synthesized Ni-NiO foam is studied 
by using field emission scanning electron microscopy (FESEM), and X-ray Powder Diffraction (XRD). It 
is noted that as synthesized Ni-NiO foams exhibited porosity of 20.55 to 28.82 % and average bulk 
crushing strength of 0.25 to 0.97 MPa which provides an understanding on some aspects of strength of 
Ni-NiO foams for potential application as functional porous materials. 
 
Materials and methods 

         Sample preparation 
Figure 1 shows a schematic diagram of the fabrication process of porous NiO foam in this work. 

The process consists of 3 main steps such as i) mixing of Ni metal powder (purity 99.8 % and maximum 
limit of impurity, Fe: 0.01 %, S: 0.001 %, C: 0.08 %, and O: 0.15 %, supplied by Sigma-Aldrich) and 
ammonium bicarbonate (NH4HCO3) (purity 98.5 % and maximum limit of impurity non-volatile matter: 
0.01 %, Cl: 0.005 %, SO4: 0.01 %, Fe: 0.002 %, and Pb: 0.0005 %, supplied by Sigma-Aldrich) as a space 
holder (SH) by using ball milling machine (2 h at 100 rpm with 5:1 ball to mixture ratio) having 
composition of Ni70SH30 and Ni50SH50 (wt% hereafter), ii) compaction of Ni powder and space holder by 
using universal testing machine (UTM) to make green compacted samples at 250 MPa, A die punch 
assembly with dimension of 50×50×50 mm3 with a hole of 15 mm was used to proper compact of powder 
mixture, and iii) sintering of green compacted samples.  

 
Figure 1 Schematic diagram of synthesis process of porous Ni-NiO foam. 
 
 

The sintering was carried out in a single step in a furnace (Nabertherm, Germany) at 600 and 700 °C 
and holding for 4 h; thereafter rested in furnace for cooling.  
 

Characterization 
The morphologies of the as sintered Ni70SH30 and Ni50SH50 samples were examined with a scanning 

electron microscope (JSM 7600F, JEOL-Japan). The X-ray diffraction patterns of the samples were 
obtained by using Cu Kα as the radiation source (Empyrean, PANalytical-Netherlands). The diffraction 
patterns were recorded over a 2θ range from 10 to 80° at a step size of 0.01°. 
 

Bulk crushing test 
Finally, the sintered 7 to 10 Ni70SH30 and Ni50SH50 samples with 40.00 mm length and 14.10 mm 

diameter were subjected to bulk compressive strength test and the average value was recorded. 
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Results and discussions 

       Characterization of porous Ni-NiO foam 
Figure 2 compares the XRD patterns of pure Ni powder and as sintered Ni70SH30 and Ni50SH50, 

samples at 600 and 700 °C. It is noted that there is no NiO peak observed for the as-received Ni powder. 
However, there is a noticeable similarity between XRD pattern of samples Ni70SH30 and Ni50SH50 sintered 
at 600 and 700 °C. The pure Ni powder and samples Ni70SH30 and Ni50SH50 sintered at 600 and 700 °C 
exhibits typical diffraction peaks located at 2θ = 44.51°, 51.86° and 76.39° which can be attributed to Ni 
(111), (200) and (220), respectively. After sintering process of all samples at 600 and 700 °C in the air, 4 
additional peaks were observed at 2θ = 37.21°, 44.51°, 51.86° and 76.38°. These peaks can be indexed to 
the (101), (110), (200) and (110) planes of a face centered cubic (FCC) NiO, respectively. The crystallite 
sizes of the Ni-NiO foam were calculated using the Scherrer equation as D = 0.94λ / (Bcosθ), where D is 
the average dimension of crystallites, λ is the wavelength of X-ray and B is the full width at half 
maximum of a reflection located at 2θ [27]. 

The average crystallite sizes of the metallic Ni before and after sintering in air are approximately 
94.30, 95.65 and 101.40 nm of Ni (111), (200) and (220) faces, respectively. In addition, the average 
crystallite sizes of the NiO of samples Ni50SH50 and Ni70SH30 after sintering in the air for 4 h at 600 °C is 
observed 29.01 and 20.84 nm, respectively. 
 

 
Figure 2 XRD patterns of the pure Ni powder and the porous Ni70SH30 and Ni50SH50 sintered at 600 and 
700 °C for 4 h. 
 
 

However, the average crystallite sizes of the NiO of samples Ni50SH50 and Ni70SH30 are increased 
when sintered in air for 4 h at 700 °C and found to be 58.95 and 52.20 nm, respectively. The increase in 
crystallite size with increasing sintering temperature can be attributed to thermally promoted crystallite 
growth [28, 29]. 

Figure 3 shows the low and high magnification images of porous Ni70SH30 foam at 600 and 700 OC. 
It is noted that sintering necks between particles are clearly found from Figure 3(b). In addition, a thin 
oxide layer of NiO was left on the Ni surface due to a remarkable increase in temperature as shown in 
Figure 3(d). These types of surface morphology such as pores, metal to metal or metal oxides contact, 
and cracks all are responsible to change the internal stress distribution [30-32]. 
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Figure 3 Low and high magnification SEM images of porous Ni70SH30 foam after sintering at (a, b) 600 
°C and (c, d) 700 °C. 

 
 
Figure 4 shows the low and high magnification images of porous Ni50SH50 foam at 600 and 700 °C. 

It is worthy to mention that the surface of a single nickel particle which exhibits a nanoflake of 
Neolamarckia cadamba (Cadamba flower) like surface morphology of NiO as shown in Figure 4(b) at 
600 °C. This type of surface morphology of NiO can provide enormous space for diffusion of 
electrolyte ions of electrodes of supercapacitor [33]. However, uniformly distributed gravels of NiO 
surface morphology exhibited as shown in Figure 4(d) when sintering temperature increased to 700 
°C. The main reason for differences in morphology of Ni-NiO foam at high temperature is basically 
generation of different thermal stress [31]. 

 

 
Figure 4 Low and high magnification SEM images of porous Ni50SH50 foam after sintering at (a, b) 600 
°C and (c, d) 700 °C. 
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Figure 5 shows the frequency distribution of pore diameter of porous Ni-NiO foams at 600 and 700 
°C.  It should be noted that the pore distribution graphs were generated from the measurements of pore 
diameter of SEM images by using Image J software. The mean pore diameter of porous Ni70SH30 foam is 
obtained 35.65 ± 12.77 µm (Figure 5(a)) at 600 °C and slightly increased to 36.10 ± 8.85 µm (Figure 5(b)) 
after sintering at 700 °C in air. This phenomenon is ascribed to the enlargement of pores during sintering. 
However, the mean pore diameter of porous Ni50SH50 foam` is 68.20 ± 7.36 µm (Figure 5(c)) at 600 °C and 
decreased to 62.45 ± 17.48 µm (Figure 5(d)) after sintering 700 °C in air. It is worthy to mention that the 
mean pore diameter of porous Ni50SH50 foam should be increased due more evaporation of space holding 
materials. However, similar phenomenon observed for other ceramic materials which can be ascribed to the 
densification of the body promoting partial removal of porosity at high temperatures [34,35]. 
 

 
Figure 5 Frequency distribution of pore diameter of porous Ni-NiO foam after sintering Ni70SH30 and 
Ni50SH50 at (a, c) 600 °C and (b, d) 700 °C. 

 
 

Figure 6 shows the SEM images of variation of porosity of Ni70SH30 and Ni50SH50 foam sintering at 
600 and 700 °C during porosity analysis through Image J software. It is noted that the porosity of 
Ni50SH50 foam increased from 20.55 to 27.35 % when in sintering temperature increased 600 °C (Figure 
6(a)) to 700 °C (Figure 6(b)). The similar phenomenon was observed for the Ni70SH30 foam where 
porosity slightly increased 27.85 to 28.82 % when in sintering temperature increased 600 °C (Figure 
6(c)) to 700 °C (Figure 6(d)). This phenomenon ascribed to the more evaporation of space holding 
material due to increase in sintering temperature. It is noted that increasing sintering temperature increase 
the pore diameter of samples but decrease the porosity of sintered samples due to sintering linear 
shrinkage [36-39]. However, the porosity and pore diameter of Ni70SH30 and Ni50SH50 foam is increased 
due to the temperature of sintering linear shrinkage of nickel/oxides above 800 °C [40-43]. 
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Figure 6 SEM images of porous Ni-NiO foam during porosity analysis through Image J software: sintering 
of (a, b) Ni50SH50 and (c, d) Ni70SH30  at 600 and 700 °C. (Black spot is Pore and White spot is Oxide). 
 
 

Bulk crushing strength of porous Ni-NiO foam 
The mechanical strength of porous material is an important parameter that provides a measure of the 

mechanical reliability and this depends on the material resistance to the bulk crushing [44]. It is noted that 
intense investigation is necessary to understand the bulk crushing strength (BCS) of bulk solid porous 
materials before industrial applications [45-48]. In this BCS tests, bulk cylindrical shaped Ni70SH30 and 
Ni50SH50 foams with 40.00 mm in length and 14.10 mm in diameter were quasi-statically compressed as 
shown in Figure 7. 

 

 
Figure 7 Schematic representation of crushing strength test: a) assemble for bulk crushing test, b) 
immediate after bulk crushing test, and c) UTM for crushing test. (Here numbers represent: 1-force 
indicator, 2-moveable cross head, 3-samples, 4-fixed table). 
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Figure 8 shows the comparison of bulk crushing force (Figure 8(a)) and crushing strength (Figure 
8(b)) of Ni70SH30 and Ni50SH50 foam after sintering at 600 and 700 °C. It is worthy to mention that the 
uniaxial compressive load was applied to the samples until the rupture moment takes place. The quality of 
the BCS of Ni70SH30 foam is improved with the increase in sintering temperature, and the Ni70SH30 foam 
is exhibited less rigid with the decrease in temperature. The average crushing load of Ni70SH30 foam with 
porosity increased to 27.85 to 28.82 % is observed 138.10 to 151.20 N when sintering temperature was 
increased from 600 to 700 °C, respectively. In contrast, the average crushing load of Ni50SH50 foam with 
porosity increased to 20.55 to 27.35 % is observed 115.40 to 39.95 N when sintering temperature was 
increased to 600 to 700 °C, respectively. This dichotomy behavior of Ni70SH30 and Ni50SH50 foam can be 
ascribed to the stress concentration in less amount of NiO of Ni50SH50 foam compared to Ni70SH30 foam 
which led to promote failure under uniaxial compressive loading through introducing microcracks [49]. It 
is contrary to popular believed that the highly porous material with high porosity is weak and easy to 
break. However, the BCS of porous material depends on the size, number of pore, pore shape, and 
crystallinity of materials [50-53]. However, the average crystallite size of NiO of porous Ni50SH50 and 
Ni70SH30 foam is observed to be 58.95 and 52.20 nm (from Figure 2), respectively. Hence, small 
crystallite size of NiO of Ni70SH30 foam led high dense boundaries and increased the activity of grain and 
enhanced the mechanical property compared to the NiO of Ni50SH50 [54] . 

 

 
Figure 8 Frequency distribution of a) bulk crushing force and b) bulk crushing strength.  
 
 
Conclusions 

In summary, porous Ni-NiO foams with 4th types of pore diameters and porosities ranging from 
20.55 to 28.82 % were prepared using space holding-powder metallurgy and sintering methods at 600 - 
700 °C in air for 4 h. The pore size and porosity can be altered through changing the composition of space 
holder and Ni powder, and sintering temperature. Four different types of porous Ni-NiO with different 
pore diameter of 35.65 ± 12.77, 36.10 ± 8.85, 68.20 ±7.36 and 62.45 ± 17.48 µm were exhibited the 
average crushing load of 115.4, 39.95, 138.10, and 151.20 N, respectively. In addition, the bulk crushing 
strength of 4 different types of Ni-NiO foam with porosity of 20.55, 27.35, 27.85 and 28.82 % were 
exhibited 0.25 MPa, 0.74 MPa, 0.88 MPa, and 0.96 MPa, respectively. It is noted that highest bulk 
crushing strength was observed to be 0.96 MPa of Ni70SH30 with 28.82 % of porosity which was sintered 
at 700 °C. 
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