An Environmental Approach in Production of Activated Carbon Monolithic Derived from Garlic Peels for Supercapacitor Application

Erman Taer¹*, Apriwandi Apriwandi¹, Widya Sinta Mustika¹², Miftah Ainul Mardiah¹ and Rika Taslim³

¹Department of Physics, Riau University, Riau 28293, Indonesia
²Departement of Maintenance and Repair Engineering, Polytechnic of Kampar, Riau 28461, Indonesia
³Departement of Industrial Engineering, Islamic State University of Sultan Syarif Kasim, Riau 28293, Indonesia

*Corresponding author’s e-mail: erman.taer@lecturer.unri.ac.id

Received: 13 September 2021, Revised: 25 October 2021, Accepted: 1 November 2021. Published: 24 November 2022

Abstract

An environmental approach is needed in the production of activated carbon as electrode material in supercapacitor applications. Activated carbon provides high specific surface area and well-developed pore structures. These circumstances compromise high electrochemical performance for supercapacitor. Therefore, this research focuses on fabricating the activated carbon derived from garlic peels through the chemical activation of potassium hydroxide under various concentrations, combined with 1-integrated stage pyrolysis. The morphology of activated carbon was observed using scanning electron microscopy (SEM), embedded in energy dispersive X-ray (EDS) for analyzing the elemental status. The crystalline degree of the activated carbon was observed using X-ray diffraction (XRD). The electrochemical performances of cell supercapacitor-based-ACM electrodes were evaluated with cyclic voltammetry (CV) and galvanostatic charging-discharging (GDC). The activated carbon was prepared in monolithic form without binder materials and shows a sponge-like porous structure with high electrochemical performance, including specific capacitance of 204 F g⁻¹, with energy and power of 28.58, 71.16 W kg⁻¹ under current densities 1 A g⁻¹, in the 2-electrode system of 1 M H₂SO₄ electrolyte. The results showed that using an environmental approach in the production of activated carbon monolithic derived from garlic peels has high electrochemical performance.

Keywords: Activated carbon, Monolithic, Garlic peels, Electrode, Supercapacitor

Introduction

A supercapacitor is a well-known alternative green technology with zero carbon waste to store energy and recover fossil exploitation [1,2]. Its advantages are long cycle life, fast charge-discharge, and excellent energy performance [3]. The supercapacitor’s energy performance ranges between batteries and conventional capacitors. However, its power density is lower than conventional capacitors (P > 10 kW kg⁻¹), with its energy density performed under batteries (E > 7 Wh kg⁻¹) [4]. Therefore, numerous studies have been carried out on ways to enhance the level of energy density in supercapacitors to narrow the gap in batteries.

A well-designed of electrode materials have been concerned to put on high-level electrochemical performance. This is in addition to the development and classification of some electrode materials in activated carbon [5,6], conducting polymer [7,8], and transition metal oxide materials [9,10]. Studies on electrode material have been attractively conducted on the activated carbon, compromising high specific surface area and well-developed pore structures [11,12]. Biomass is the most common material used as a precursor for constructing activated carbon electrodes because it is priceless, easily processed, and environmentally friendly [13,14]. Biomass based-plants have been widely explored in the production of activated carbon material, such as fruit [15], flower [16], leaves [17], stem [18,19], bunch [20], and grass [21]. Presently, studies have been carried out on the use of plant seed as activated carbon materials [22], including fresh seed [23] and seed wasted-peels [24].

Furthermore, a great potential of garlic peels has been recommended for activated carbon electrodes, in which a high initial carbon yield of 46.48 % [25]. Zhang et al. (2018) stated that 3D pores structure of activated carbon derived garlic peels by chemically activated in the high level up a ratio of potassium hydroxide (KOH) [26]. Meanwhile, Teng (2020) also researched activated carbon from garlic
peels using KOH activation and irradiation of ultrasonic waves to improve the specific surface area [27]. However, these studies only focused on fabricating activated carbon in powder form, which is dusting with low mechanical strength.

In powder form, it is usually mixed with binder materials in assembly on supercapacitor cells, which blocked the ion penetration path [28]. This tends to level down the electrical conductivity as well as lowering the energy density [29]. Furthermore, the binder materials used is concerned with ineffective cost in production [30]. Additionally, both binder material and the high-level ratio of activated agent used remains environmental impact. Therefore, alternative treatment in low chemical materials is needed to ensure eco-environmental activated carbon electrode-based biomass production.

Some biomasses were treated as a monolithic form of activated carbon to ensure a low chemically activated process and avoid binder materials. The monolithic maintain for high electrical conductivity and ion adsorption, obviously producing high specific capacitance [14]. Also, the monolithic form shows a higher energy density comparative to powder form. For example, a rubber wood waste activated in low H3PO4 (10 % w/v) exhibited a high capacitance of 129 F g−1 under an energy density of 14.2 Wh kg−1 [3]. Eucalyptus and olive stone prepared in monolithic form showed a specific capacitance of 161 F g−1 and 217 F g−1, respectively [31]. Recently, banana leaves performed in low chemically activated KOH exhibited excellent energy performance, including specific capacitance (C, 245 F g−1) and energy density (F, 36.67 Wh kg−1) [32].

In this research, garlic peels carbon was chemically activated in the low-level ratio of KOH (≤0.75 M) to obtain self-adhesive properties, which is used on monolithic coin liked-shape electrodes without binder materials. Subsequently, the monolithic electrode was converted into activated carbon through the 1-integrated pyrolysis stage of both carbonization (N2/600 °C) and physical activation (CO2/850 °C) and was represented through the density changes of the electrode. Physical characterization was evaluated using scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD). Also, electrochemical properties of the electrode were performed using cyclic voltammetry (CV) and Galvanic Charge-Discharge (GCD) in a 2-electrode system.

Materials and methods

Materials and instruments

Garlic peels (local product) were obtained from Traditional marketplace of Panam, Riau Province, Indonesia, potassium hydroxide (KOH) and sulfate acid (H2SO4) were in Merck KGa, Germany, DI water was purchased from Chemical Laboratory of University of Riau, Indonesia, pH-indicator strips (MColorpHast™). Tubular Furnace was designed by Payun Tech company from Indonesia, scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) were in JEOL-JSM-6510-LA from Japan, X-ray diffraction (XRD) was Philip X-Pert Pro-PW3060/10, from Netherlands, cyclic voltammetry (CV, CV-UR Rad-Er 5841) and galvanostatic charging-discharging (GDC. CD-UR-Rad-Er 2018) were self-designed by University of Riau, Indonesia, that have been calibrated with standard instrument in error of ± 6 %.

Preparation of ACM electrodes

The activated carbon monolithic (ACM) electrodes were obtained using natural garlic peels (Traditional marketplace of Panam, Riau Province, Indonesia), oven-dried, and successively pre-carbonized to the temperature of 250 °C for 2.5 h. The obtained intermediate product was powdered through a set of mill instrument and sieved for homogeneous powder with its size less than 53 µm. Subsequently, the powdered product was chemically activated using a solution of potassium hydroxide (KOH) (Merck KGa, Germany), prepared in various concentrations of 0.25, 0.50 and 0.75 m. The activated powder products were pelletized into monolithic coin-like shape form through a set of hydraulic press instrument operated on 8 ton mass loaded. Furthermore, each monolithic sample was converted into an ACM product through 1-stage integrated pyrolysis, using the carbonization (N2/600 °C) and physical activation (CO2/850 °C) processes. After the sample has cooled down, the products of activated carbon were immersed into DI water to measure the pH level (pH-indicator strips, MColorpHast™). The DI water was refilled and its pH was checked every 24 h until the pH level of 7. Finally, the products were labeled for ACM-x, where x denotes KOH concentration.
Physical characterization

The ACM samples were characterized in the dimensional density with the morphologies evaluated using scanning electron microscopy (SEM, JEOL-JSM-6510-LA, Japan), embedded in energy dispersive X-ray (EDS) for analyzing the elemental status on the surface of a sample, operated at 15 kV. The crystalline degree of the samples was observed using X-ray diffraction (XRD, Philip X-Pert Pro-PW3060/10, Netherlands), applied in Cu-Kα radiation (Kα=1.5418 Å). The interlayer spacing (d002 and d100) and microcrystalline dimension (Lc and La) were calculated based on Bragg’s Law and Debye-Scherer Equation, respectively.

Electrochemical measurement

The ACM samples were first immersed in an aqueous electrolyte in 1 m H2SO4 (Merck KGa, Germany). Priors to electrochemical analysis, the electrodes of ACM were polished in the thickness level of 0.2 mm, assembled in sandwich-like layers, in accordance with preliminary studies [33,34]. Two ACM electrodes were prepared on the current collector plate (d = 0.4 mm, stainless steel), separated by a separator membrane (duck eggshell). Subsequently, the assembled electrodes were covered using a acrylic body cell and a teflon rod circled. The electrochemical performances of cell supercapacitor-based-ACM electrodes were evaluated in the 2-electrode cell with cyclic voltammetry (CV, CV-UR Rad-Er 5841, University of Riau, Indonesia) and galvanostatic charging-discharging (GDC, CD-UR-Rad-Er 2018, University of Riau, Indonesia). CV and GDC were scan rates of 1 mV s\(^{-1}\) and 1 A g\(^{-1}\), respectively, operating in the potential of 1 V. The specific capacitance (C, F g\(^{-1}\)), specific energy (E, Wh kg\(^{-1}\)), and specific power (P, W kg\(^{-1}\)) were calculated in the standard equation.

Results and discussion

Monolithic characteristic

The monolithic characteristic was performed in density parameter, which shrank after the pyrolysis treatment of ACM, as shown in Figure 1. The density shrinkage was evaluated on the mass losses, diameter, and decline in thickness with the release of activated carbon’s mass by non-carbon materials determined in 2 stages. First, some elemental volatiles such as oxygen, hydrogen, and nitrogen were released at high temperatures by the carbonization treatment. Second, carbon monoxide was produced as residual products of physical activation by CO\(_2\) [35,36]. Additionally, KOH impregnated bubbled during pyrolysis and increased the volatiles removal. These mass losses were carried out to produce some vacancies on the carbon atom, thereby leading to the rearrangements of its chains. This circumstance tends to decrease the ACM dimension, namely diameter, and thickness. However, the highest concentration of KOH of 0.75 m led to high density, with less bubbles and some solid K-byproducts.

![Figure 1 Density diagram of ACM.](image)

The ACM samples density was found in the range of 0.64 - 0.89 g cm\(^{-3}\), which is fit for activated carbon-based biomass materials for the monolithic formed. For example, the density values in the ranges of 0.64 - 1.02 g cm\(^{-3}\) were reported for the activated carbon monolithic from *Areca catechu* husk, which
was chemically activated by KOH [33]. Activated carbon monolithic based green stem of cassava demonstrated the density between 0.61 - 0.93 g cm$^{-3}$ [34]. Furthermore, the low density ($\rho \leq 0.75$ g cm$^{-3}$) is predicted in sponge-like porosity and is expected for better ion penetration and high electrochemical performance [37].

Morphology analysis

The morphology structure of ACM was evaluated using scanning electron microscopy (SEM), as shown in Figure 2. The nanofiber structures were observed on the aggregate surface, sizing of 80 - 102 nm (Figures 2(a) - 2(e)), and were extracted on cellulose compound inside raw garlic peels through an alkaline reaction of KOH [38]. In addition, the nanofiber structures were also obtained in activated carbon-based biomass material and the macropore between the aggregates were revealed [33,34]. This result is associated with the chemical activation of KOH on the active sites of carbon material [39]. Accordingly to the magnified SEM analysis (Figures 2(d) - 2(e)), many pores exist on the walls of aggregate. This is attributed to the potassium vapor, which is diffused into the deep carbon layer as physical activation treatment (CO$_2$/850 °C) and eventually generating new pores [40].

![Figure 2 SEM image](image)

Figure 2 SEM image, (a) ACM - 0.25, (b) ACM - 0.50, (c) ACM - 0.75, d) enlarged (a), (e) enlarged (b), (f) enlarged (c).

The sponge-like porous structure was depicted by ACM - 0.50 and remarked in Figures 2(b) - 2(e) shows that some pore existed on the inside layer of the aggregate due to the presence of an increased concentration of KOH. Furthermore, this sponge-like porous contributes to the accessible surface for ion pairs formation and enhances electrochemical performance [26]. The fiber density for ACM - 0.75 increased with a decline in pores structures in which impregnated KOH produce less bubbling and more crystalizing by K-byproducts, as confirmed on the EDS analysis in the next subsection. This crystallized product generated the blocked pores (Figure 2(f)) and increased the internal resistance of materials.

Microstructure analysis

The microstructure characteristics were analyzed on an XRD diffractogram, as shown in Figure 3. It consists of 2 broadening peaks in the range of 24.152 - 25.673 ° and 44.657 - 46.515 °, reflecting a carbon plane of 002 and 100, respectively (JCPDS No. 41 - 1487). These degrees correspond to the amorphous structure, typically for porous carbon-based biomass [41]. The porous structure contributes to etch carbon-compound chains by activation process and rearranging carbon atoms [14]. Some sharp peaks were found, which indicated the presence of impurities at the peak of 29 ° (JCPDS No. 89 - 1668) for SiO$_2$, while 37 ° and 39° were obtained for CaCO$_3$ (JCPDS.82 - 1690). These materials were also found as a residual product of the pyrolysis process on biomass [34].
The value of the microstructure parameter is shown in Table 1. According to Bragg Law, the interlayer space \(d_{002} \) and \(d_{100} \) is in the range of 3.670 - 3.682 and 1.951 - 2.028, which is ideal for amorphous structure on porous carbon material [20]. However, the \(d_{002} \) of ACM - 0.75 is 3.467, which slightly tends to graphite structure [41]. It is associated with high impurity in crystalline degree, thereby affecting the reflecting plane of carbon. This impurity is confirmed in the EDS analysis on next subsection. The microcrystalline structures \(L_c \) and \(L_a \) were calculated using the Debye-Scherer equation. The ACM - 0.50 shows that the \(L_c \) and \(L_a \) are potential for high microporosity. This is supported by an SEM image on sponge-like porous, which is explained in the above subsection. Based on the empirical formula from Kumar, the low \(L_c \) provide a large surface active area, thereby enhancing a cumulative of ion pairs formation, which given in Eqs. (1) - (2) [42].

\[
SSA_{XRD} = \frac{2}{\rho_{XRD}L_c}
\]

\[
\rho_{XRD} = \left(\frac{d_{002}(\text{graphite})}{d_{002}} \right) \rho_{\text{graphite}}
\]

Where \(SSA_{XRD} \) is specific surface area \((\text{m}^2 \text{g}^{-1}) \), \(d_{002}(\text{graphite}) \) determines as interlayer spacing of graphite \((d_{002}(\text{graphite}) = 3.3354 \text{ Å}) \). Also, \(\rho_{\text{graphite}} \) is density of graphite \((\rho_{\text{graphite}} = 2.268 \text{ g cm}^{-3}) \), \(\rho_{XRD} \) denotes density of activated carbon in graphite structure. These data assumed, the higher \(SSA_{XRD} \) provide more ion pairs formation.

<table>
<thead>
<tr>
<th>Samples</th>
<th>2θ_{002} (°)</th>
<th>2θ_{100} (°)</th>
<th>(d_{002}) (Å)</th>
<th>(d_{100}) (Å)</th>
<th>(L_c) (Å)</th>
<th>(L_a) (Å)</th>
<th>SSA_{XRD} (m^2 g^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM - 0.25</td>
<td>24.233</td>
<td>45.612</td>
<td>3.670</td>
<td>1.987</td>
<td>13.003</td>
<td>7.423</td>
<td>746.211</td>
</tr>
<tr>
<td>ACM - 0.50</td>
<td>24.152</td>
<td>46.515</td>
<td>3.682</td>
<td>1.951</td>
<td>12.372</td>
<td>4.511</td>
<td>786.832</td>
</tr>
<tr>
<td>ACM - 0.75</td>
<td>25.673</td>
<td>44.657</td>
<td>3.467</td>
<td>2.028</td>
<td>16.144</td>
<td>16.728</td>
<td>567.782</td>
</tr>
</tbody>
</table>

Elemental status
The elemental status of ACM samples was analyzed using the EDS technique, as shown in Table 2. The increase in concentration of KOH, led to a rise in carbon (C) contents for ACM - 0.25 and ACM - 0.50 from 74.19 - 78.09 %, with a decrease in oxygen (O) contents. Also, each sample gradually decreased in the composition of calcium (Ca), magnesium (Mg), and silicon (Si) due to the degradation of carbon compounds during the pyrolysis process. Mineral contents were also found out as elemental basic...
in biomass materials [43]. In addition, the KOH impregnation generated C-compounds etching, thereby increasing C contents and contributing to high electrochemical performance [33]. Meanwhile, potassium (K) contents surprisingly increased the level by 10.56 %. This process was obtained due to the incomplete removal of the K-byproduct. However, the excessive concentration of KOH, the C contents for ACM - 0.75 dramatically decreased due to the high level of K-byproducts, leading to low C-compounds etching. This was also found in the heteroatom compositions, which are sodium (Na), sulfur (S), and chlorine (Cl).

Table 2 Elemental contents.

<table>
<thead>
<tr>
<th>Samples</th>
<th>C (%)</th>
<th>O (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Si (%)</th>
<th>K (%)</th>
<th>Cl (%)</th>
<th>Na (%)</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM - 0.25</td>
<td>74.19</td>
<td>21.54</td>
<td>3.26</td>
<td>0.36</td>
<td>0.66</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ACM - 0.50</td>
<td>78.09</td>
<td>16.35</td>
<td>0.24</td>
<td>0.35</td>
<td>0.38</td>
<td>4.59</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>ACM - 0.75</td>
<td>55.76</td>
<td>27.39</td>
<td>1.72</td>
<td>0.20</td>
<td>0.31</td>
<td>10.56</td>
<td>3.05</td>
<td>0.58</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Electrochemical performance

Set electrochemical tests were performed to evaluate the electrochemical behavior of the activated carbon monolithic derived from garlic peels. The CV and GDC results for activated carbon electrode-based garlic peels in 1 M H$_2$SO$_4$ electrolyte are shown in **Figure 4**. Each sample depicts a rectangular-like shape of CV curve, corresponding to electrochemical double-layer capacitance (EDLC), which was also found in every electrode material based-activated carbon biomass, prepared without binder material [26,32]. Based on the current and CV areas, ACM - 0.50 has the highest specific capacitance of 192 F g$^{-1}$, which is 42 and 400 % higher than ACM - 0.25 and ACM - 0.75, respectively. The high capacitance is related to the sponge-like porous structure, serving a large accessible surface area for ion pairs formation.

Figure 4(b) shows different CV curves for ACM - 0.50 at various scan rates, with each generating a rectangular-like shape in a double-layer mechanism. However, a straight line in the CV curve as the initial charging process had a scan rate of 1 mV s$^{-1}$, thereby indicating a spontaneous charging mechanism. Although, the ramping step was observed on the CV curve as a scan rate of 2 mV s$^{-1}$, indicating a series resistance for the charging process. For other samples within a higher scan rate above 2 mV s$^{-1}$, the CV curves are non-ideal double-layer capacitance due to low ion transfer inside pores of sponge-like porous.

The specific capacitance at various scan rates for the ACM sample is shown in **Figure 4(c)**. The specific capacitance is dramatically decreased at a scan rate of 1 - 2 mV s$^{-1}$, which is dropped into 55 and 44 % for ACM - 0.25 and ACM - 0.50, respectively. Meanwhile, as the scan rate increased above 2 mV s$^{-1}$, each sample gradually decreased the specific capacitance. At a scan rate of 10 mV s$^{-1}$, these specific capacitances remained at the level of 35, 28 and 35 %, respectively, for ACM - 0.25, ACM - 0.50 and ACM - 0.75. This is associated with a narrow path used to get insides pore in ion penetration, which is slow in the charge-discharge mechanism.

Figure 4(d) illustrates the GDC curves of ACM samples at a current density of 1 A g$^{-1}$, which showed a nonlinear triangular like shape. These curves correspond to the EDLC mechanism, containing low faradaic reaction by imperfectly elemental heteroatom [30,32]. It also shows an asymmetrical triangular curve, compromising charged processes that are longer than the discharge and linked to the appearance of series resistance from the narrow path in ion penetration. According to GDC curves, the highest specific capacitance is 204 F g$^{-1}$ (ACM - 0.50), followed by ACM - 0.25 (162 F g$^{-1}$) and ACM - 0.75 (37 F g$^{-1}$). This is caused the sponge liked-porous providing better pores structure for large cumulative of ion pairs formation. Also, it correlated to the internal resistance of ACM, corresponding to 0.020 Ω (ACM - 0.25), 0.008 Ω (ACM - 0.50) and 0.075 Ω (ACM - 0.75).

The energy and power densities were calculated in the standard equation of 28.58 and 71.16 W kg$^{-1}$, respectively. These values are low compared to the previously reported ones used in activated carbon electrodes derived from garlic peels, the monolithic form of activated carbon applied as an electrode in a supercapacitor exhibits high energy density [26]. The monolithic form was adjusted to combine the sponge liked-porous and easy-accessible carbon surface. The sponge porous structure was developed on chemically activation using KOH. The inside pore of the sponge structure tends to size in micropore ranges, producing abundant cumulative ion pairs [44]. Furthermore, the micropores tend to generate a
narrow path for ion transfer and decrease the rate of charge-discharge [24]. Meanwhile, a binder-free method in monolithic electrode attained the electrical conductivity on the active sites of carbon surface, thereby enhancing the interaction between carbon surface and electrolyte ions.

Figure 4 (a) CV curves of ACM samples at a scan rate of 1 mV s\(^{-1}\), b) CV curves of ACM - 0.50 at various scan rate, (c) specific capacitances at various scan rate for ACM samples, (d) GDC profile of ACM electrode at a scan rate of 1 mV s\(^{-1}\).

Conclusions

The activated carbon monolithic derived from garlic peels were successfully synthesized using a low chemically activated route. The fabrication was determined in various concentrations of potassium hydroxide as an activating agent, such as 0.25, 0.50 and 0.75 M. The activated carbon was synthesized via 1-integrated stage pyrolysis both carbonization (N\(_2/600 \) °C) and physical activation (CO\(_2/850 \) °C). The monolithic density was evaluated, and the relationship between the physical characteristic and electrochemical performance were analyzed. The result showed the amorphous structure with high carbon yields (78.09 %) under optimal conditions. Most interestingly, a unique structure of sponge-like porous was enabled and put on high electrochemical performance, including a specific capacitance of 204 F g\(^{-1}\). Furthermore, it performs energy and power density of 28.58 and 71.16 W kg\(^{-1}\), respectively, at current densities of 1 A g\(^{-1}\). This electrode was performed in 2-electrode systems consisting of 1 M H\(_2\)SO\(_4\) electrolyte, without binder materials. The results highlight an environmental route for fabricating electrode materials from biomass for high electrochemical performance.
References

[23] S Li, Q Chen, Y Gong, H Wang, D Li, Y Zhang, Q Fu and C Pan. One-step carbonization activation of garlic seeds for honeycomb-like hierarchical porous carbon and its high supercapacitor properties. ACS Omega 2020; 5, 29913-21.
[27] Z Teng, K Han, J Li, Y Gao, M Li and T Ji. Ultrasonics - sonochemistry ultrasonic-assisted preparation and characterization of hierarchical porous carbon derived from garlic peel for high-performance supercapacitors. Ultrason. Sonochem. 2020; 60, 104756.
[39] G Huang, Q Geng, B Xing, Y Liu and Y Li. Manganese nitrate-assisted potassium hydroxide activation of humic acid to prepare oxygen-rich hierarchical porous carbon as high-performance supercapacitor electrodes. J. Power Sourc. 2020; 449, 227506.