Heterophase of Bismuth Titanate as a Photocatalyst for Rhodamine B Degradation

Atiek Rostika Noviyanti1,*, Diana Rakhrmawaty Eddy1, Muhamad Diki Permana1,2,3 and Risdiana4

1Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran Sumedang, West Java 45363, Indonesia
2Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu 4008511, Japan
3Center for Crystal Science and Technology, University of Yamanashi, Kofu 4008511, Japan
4Department of Physics, Faculty Mathematics and Natural Sciences, Universitas Padjadjaran Sumedang, West Java 45363, Indonesia

(*Corresponding author’s e-mail: atiek.noviyanti@unpad.ac.id)

Received: 29 September 2022, Revised: 29 November 2022, Accepted: 6 December 2022, Published: 20 August 2023

Abstract

Various studies have been made to obtain high efficiency photocatalysts. Avuirillllus bismuth titanate oxide is known to have good photocatalytic activity to degrade dyestuffs. However, recombination is still an obstacle to photocatalytic efficiency. To overcome recombination and increase photocatalytic activity, it is proposed to synthesize bismuth titanate heterophase. Heterophase can enhance the formation of the synergistic effect of electrons, which effectively stimulates the transfer of electrons from 1 phase to another. This study aims to determine the photocatalytic ability of bismuth titanate heterophase for degradation of a rhodamine B. Bismuth titanate was synthesized by hydrothermal method using Bi2O3 and TiO2 precursors. The results of X-ray diffraction characterization showed that the synthesized bismuth titanate formed 2 phases, namely Bi2Ti4O12 (78.2 %) and Bi2Ti6O129.8 (21.8 %). In addition, it is also known that the volume of the synthesized bismuth titanate crystal lattice has a smaller volume than the standard synthesized in previous studies. The photocatalytic ability of bismuth titanate evaluated using 10 mg/L rhodamine B showed that it took 240 min to degrade 98 % of dye. Reaction kinetics studies showed that bismuth titanate has a reaction rate constant efficiency of 120 % better than TiO2 for the Langmuir- Hinshelwood 1st-order kinetic model. Then the reuse ability was evaluated, showing that after 3 times of uses, bismuth titanate only decreased 5 %, whereas TiO2 decreased by 7 % in degradation.

Keywords: Metal oxide, Degradation, Photocatalysis, Wastewater treatment

Introduction

The rapid development of the textile industry has become one of the largest contributors of dye waste to the environment [1]. Dyestuff waste causes aesthetic problems and organic pollutants that have a negative impact on aquatic organisms and humans [2]. One of the dyes used is rhodamine B [3]. Rhodamine B or also called tetraethyl rhodamine is a basic organic dye. Rhodamine B can cause irritation to the skin, eyes, respiratory tract and digestive tract. While in the body it can cause various serious diseases such as liver cancer and kidney damage [4]. Thus, the presence of rhodamine B dye should be reduced in the environment. Currently, many methods have been used to reduce rhodamine B levels, namely sonolysis [3,5], Fenton method [6,7], ozonolysis [8], and photocatalysis [9,10]. In recent years, photocatalysis has become a frequently used method [11-13]. Photocatalysis is used because it has advantages, namely high degradation efficiency [14], low cost, and environmentally friendly [15].

Metal oxides are one of the most important types of materials, apart from the fact that minerals or metallic ores are found in nature in the form of metal oxides [16], and also because of their many cutting-edge uses such as superconducting materials [17,18] and catalysts [19-21]. The diversity of applications in metal oxides comes from the diversity of the structure and properties of the metal oxides [22]. This is the reason why research on metal oxide materials continues to be carried out. Over the past 4 decades, various metal oxides have been used in photocatalysis. One of the most frequently used materials is TiO2. TiO2 is widely used because it has good chemical stability and is relatively cheap in price [14]. However, the photoactivity of TiO2 has the disadvantage that it only absorbs a small part of the solar spectrum and there
is still a lot of hole-electron recombination [23]. Lee et al. [24] mentioned that TiO$_2$ has limited photocatalytic efficiency due to its wide energy bandgap. It takes alternative materials that have small bandgap energy.

Bismuth titanate is the Aurivillius family of compounds. Bismuth titanate has a band gap energy of 2.88 eV, which is lower than TiO$_2$ of 3.24 eV [25]. This compound consists of a perovskite layer [Bi$_3$Ti$_3$O$_{10}$]$^{2-}$ which is intercalated with 2 layers of [Bi$_2$O$_2$]. The electric field between the (Bi$_2$O$_2$) layers and the (Bi$_3$Ti$_3$O$_{10}$) layer can prevent the recombination of holes and electrons and can increase photocatalytic activity [26]. Thus, in this study bismuth titanate was used as a photocatalyst material. In addition, to increase the photocatalytic ability, heterophase modification is also used. Heterophase can enhance the formation of a synergistic effect of electrons, which effectively stimulates the transfer of electrons from 1 phase to another [27].

Bismuth titanate has been synthesized using various methods, including solid chemical reaction, coprecipitation and sol-gel. In recent years, it has been reported that the hydrothermal method is used to synthesize Bi$_4$Ti$_3$O$_{12}$ [28]. The hydrothermal method has several advantages such as allowing the synthesis of compounds that have oxidation numbers that are difficult to obtain, metastable compounds and obtainable high purity [29].

Therefore, in this study, bismuth titanate was synthesized as a photocatalyst for the degradation of rhodamine B. TiO$_2$ and Bi$_2$O$_3$ were used as precursors for the synthesis of bismuth titanate. In addition, the synthesis was carried out using the hydrothermal method and made into a heterophase which makes this research different from previous studies. The properties of the bismuth titanate crystals formed were examined by XRD. We also compared the photocatalytic activity of synthesized bismuth titanate with TiO$_2$. In addition, the reusability of its photocatalytic activity on the decomposition of rhodamine B was also investigated.

Materials and methods

Materials

The materials used in this study are bismuth oxide (Bi$_2$O$_3$, 99.99%, Sigma-Aldrich, St. Louis, USA), titanium dioxide (TiO$_2$ Anatase, ≥ 90%, Sigma-Aldrich, St. Louis, USA), demineralized aqua (Brataco, Tangerang, Indonesia), sodium hydroxide (NaOH, 99.99%, Merck, Kenilworth, USA), and rhodamine B (C$_{28}$H$_{31}$ClN$_2$O$_3$, 99.99%, Merck, Kenilworth, USA).

Synthesis of bismuth titanate by hydrothermal method

Bismuth titanate was synthesized by hydrothermal method. Bismuth oxide (Bi$_2$O$_3$), titanium dioxide (TiO$_2$) were mixed in a mole ratio of 2:3. Then the mixture was dissolved in 50 mL of 3 M NaOH, put into an autoclave (CIT-HTC230-V100 Co1-Int 125 mL) and heated in an oven at 240 °C for 72 h. The product formed was washed with demineralized water, and then filtered and dried in an oven at 110 °C for 18 h. A yellowish-white bismuth titanate was produced (Figure 1) with a yield of 92%.

Characterization of bismuth titanate

The resulting bismuth titanate was further characterized by using X-ray diffraction (XRD) to identify the structure of crystals. Bismuth titanate was analyzed by XRD (PANalytical type X’Pert PRO PW 3040/60). Measurements were carried out at room temperature using Cu Ka radiation at an angle of 20 from 10 to 80 °. Crystal structure was refined by Rietveld refinement using HighScore Plus (PANalytical 3.0.5)
software [30]. The refinement result of the crystal is drawn using the Visualization for Electronic Structural Analysis (VESTA) software.

Photocatalytic activity test of bismuth titanate

A total of 50 mg of sample and 50 mL of rhodamine B 10 ppm were mixed in a beaker. The mixture was then placed in a homemade photoreactor and irradiated with a Hg lamp (HPL-N 125W, Philips, China, UV A equivalent to a wavelength of 315 - 400 nm) on a magnetic stirrer (IKA C-MAG MS 4, Germany) with an irradiation area of 26 cm² for 4 h at room temperature. Then, 2 mL of rhodamine B solution was taken every 1 h using a membrane syringe. Rhodamine B solution then analyzed using UV-vis spectrophotometer (Genesys 10S, USA) to determine the remaining concentration of rhodamine B. For the reuse study, after use, the catalyst was centrifuged and then dried in an oven at 110 °C for 18 h. Then, the catalyst was used again to see its ability to degrade rhodamine B.

Results and discussion

Structural analysis of bismuth titanate by XRD

The results of the X-ray diffraction (XRD) analysis are shown in Figure 2. The XRD pattern of bismuth titanate shows similarities to the Inorganic Crystal Structure Database (ICSD) 98-015-9929 for Bi₄Ti₃O₁₂ (orthorhombic, space group Aba2) [31], and ICSD 98-003-9288 for Bi₁₂Ti₆.9O₁₉.₈ (cubic, space group I₂₃) [32]. Bi₄Ti₃O₁₂ shows peak patterns at 2θ = 23.3° (111), 30.1° (171), 32.8° (002) and several other peaks. Whereas at 2θ = 24.7 and 27.7° which correspond to (022) and (013) atomic planes, respectively, are typical peaks of Bi₁₂Ti₆.9O₁₉.₈.

![Figure 2](image-url) Diffraction pattern of bismuth titanate synthesized by hydrothermal method.

The percentage of synthesized bismuth titanate crystal structure was calculated using the Rietveld method and refined using the HighScore Plus software (PANalytical 3.0.5) [30]. Scale-factors, 0-shift, and coefficients of shifted polynomial functions are used to match the background. Table 1 shows the percentage of the Rietveld refinement phase, where the synthesis results show that 2 phases are formed, namely Bi₄Ti₃O₁₂ of 78.2 % and Bi₁₂Ti₆.9O₁₉.₈ of 21.8 %. Thus, it can be seen that the hydrothermal method causes the formation of 2 phases of bismuth titanate, where defects occur in the minor phase. The crystal structure of bismuth titanate as shown in Figure 3.

<table>
<thead>
<tr>
<th>Phase</th>
<th>ICSD</th>
<th>Phase Percentage (%)</th>
<th>Rp</th>
<th>Rwp</th>
<th>Rexp</th>
<th>GoF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi₄Ti₃O₁₂</td>
<td>98-015-9929</td>
<td>78.2</td>
<td>7.706</td>
<td>10.450</td>
<td>7.208</td>
<td>2.102</td>
</tr>
<tr>
<td>Bi₁₂Ti₆.9O₁₉.₈</td>
<td>98-003-9288</td>
<td>21.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3 Crystal structure of Bi$_4$Ti$_3$O$_{12}$ and Bi$_{12}$Ti$_{0.9}$O$_{19.8}$.

To confirm the accuracy of the calculation from Rietveld refinement, the goodness of fit (GoF) value of the experimental XRD pattern is also calculated with the XRD pattern calculated from the standard (Figure 4). GoF is a statistical model describing how well the experimental results were obtained with a series of observations [33]. The smaller the GoF value, the better the match, with the ideal GoF value being 1 [34]. In Table 1, it can be seen that the GoF value in the sample is 2.102, which is still acceptable.

Figure 4 Plot of the result of fitting Rietveld refinement of XRD pattern of bismuth titanate.

Crystal size was calculated using the Debye-Scherrer equation. The calculated crystal size is the average of each phase peak in the XRD pattern. The crystal size of the sample was calculated by Eq. (1) [35].

$$D = \frac{(K \lambda)}{(B \cos \theta)}$$ \hspace{1cm} (1)

where D is the crystal size (nm), K is the Scherrer constant (0.89), B is the peak full width at half maximum (FWHM) value (rad), is the wavelength of X-ray radiation (0.15418 nm), and is the diffraction angle (rad). Table 2 shows that the crystal size of the Bi$_4$Ti$_3$O$_{12}$ phase has a smaller size of 32.31 nm, compared to the Bi$_{12}$Ti$_{0.9}$O$_{19.8}$ phase of 64.86 nm.
The crystallinity of the sample was calculated by comparing the peaks of the crystal phase with the total peaks in the XRD pattern using the OriginPro 8.5.1 SR2 software [36]. Table 2 shows the crystallinity percentage of the samples. It can be seen that the crystallinity of the synthesized bismuth titanate has a large crystallinity. Large crystallinity is needed in photocatalysis in order to avoid the possibility of electron-hole recombination so that it can increase photocatalytic activity [37,38].

Table 3 shows the lattice parameters of bismuth titanate samples and ICSD standards. It can be seen that the synthesized substance has bismuth titanate crystals with a volume smaller than the ICSD standard. The difference in the volume of the Bi$_4$Ti$_3$O$_{12}$ crystal lattice is 0.888 Å3, while the different volume of the Bi$_{12}$Ti$_{0.9}$O$_{19.8}$ crystal lattice is 5.950 Å3. This shows that the bismuth titanate synthesis process using the hydrothermal method produces a smaller crystal lattice than other methods that have been carried out previously [31,32].

Table 2 The crystal size and crystallinity percentages of the samples.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Crystal size (mean ± standard deviation)</th>
<th>Crystallinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_4$Ti3O${12}$</td>
<td>32.31 ± 4.69 nm</td>
<td>82.63</td>
</tr>
<tr>
<td>Bi${12}$Ti${0.9}$O$_{19.8}$</td>
<td>64.86 ± 4.67 nm</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 The crystal lattice parameters of sample and standard.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lattice parameters (Å)</th>
<th>Crystal volume (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICSD 98-015-9929</td>
<td>a: 5.426, b: 32.683, c: 5.437</td>
<td>964.190</td>
</tr>
<tr>
<td>Bi$_4$Ti3O${12}$</td>
<td>a: 5.409, b: 32.705, c: 5.445</td>
<td>963.302</td>
</tr>
<tr>
<td>ICSD 98-003-9288</td>
<td>a: 10.186, b: 10.186, c: 10.186</td>
<td>1056.840</td>
</tr>
<tr>
<td>Bi${12}$Ti${0.9}$O$_{19.8}$</td>
<td>a: 10.167, b: 10.167, c: 10.167</td>
<td>1050.890</td>
</tr>
</tbody>
</table>

Photocatalytic activity of bismuth titanate

The synthesized bismuth titanate was tested for its photocatalytic activity against rhodamine B. TiO$_2$ was used as a comparison of photocatalytic performance. The experimental results of the photocatalytic degradation of rhodamine B are shown in Figure 5. The photocatalyst activity exposed to UV light had a better percentage of degradation (Figure 5(a)) than that which was not exposed (Figure 5(b)). This indicates that photons from UV light have a positive effect on photocatalyst performance in the oxidation of rhodamine B. In addition, it is seen that bismuth titanate has better adsorption which is correlated with its photocatalytic ability (97.96 %) for 240 min. Meanwhile, TiO$_2$ has slightly weaker adsorption and photocatalytic abilities. However, TiO$_2$ degrades faster during the 1st 120 min of photocatalysis. The data of the phenol concentration and percentage reduction at any time are presented in Table 4.

Table 4 Concentration and percentage of rhodamine B removal over time.

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Concentration of rhodamine B (mg/L)</th>
<th>Degradation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bismuth titanate</td>
<td>TiO$_2$</td>
</tr>
<tr>
<td>0</td>
<td>10.00 ± 0.40</td>
<td>10.00 ± 0.40</td>
</tr>
<tr>
<td>60</td>
<td>3.94 ± 0.38</td>
<td>1.40 ± 0.26</td>
</tr>
<tr>
<td>120</td>
<td>2.85 ± 0.24</td>
<td>0.78 ± 0.35</td>
</tr>
<tr>
<td>180</td>
<td>0.58 ± 0.14</td>
<td>0.53 ± 0.14</td>
</tr>
<tr>
<td>240</td>
<td>0.20 ± 0.02</td>
<td>0.28 ± 0.05</td>
</tr>
</tbody>
</table>
Figure 5 (a) Adsorption activity and (b) Photocatalytic activity of the catalyst against rhodamine B. The experiment was carried out using 50 mL of rhodamine B 10 mg/L with 50 mg of catalyst.

The photocatalyst showed a higher percentage reduction. This shows that the degradation performance of rhodamine B is affected by photons from UV light. Bismuth titanate exposed to UV light will result in a jump of electrons from the valence band to the conduction band. As a result, holes (h+) and electrons (e−) are formed. This species reacts with oxygen (O2) and water (H2O) from the environment to produce •OH radicals which can degrade rhodamine B. Meanwhile, for those who are not exposed to light (dark state), there is no energy to activate the photocatalyst performance. The process of decreasing the concentration of rhodamine B is an adsorption process. The photocatalytic reactions that occur are described by reactions (2) - (7) [38]:

\[
\begin{align*}
\text{Bi}_4\text{Ti}_3\text{O}_{12} + hv & \rightarrow e^- + h^+ \\
e^- + O_2 & \rightarrow O_2^- \\
h^+ + H_2O & \rightarrow \cdot\text{OH} + H^+ \\
O_2^- + 2H^+ & \rightarrow \cdot\text{OH} + \text{OH}^- \\
\text{rh B} + O_2^- & \rightarrow \text{degradation products} \\
\text{rh B} + \cdot\text{OH} & \rightarrow \text{degradation products}
\end{align*}
\]

The crystal structure of Bi4Ti3O12 is composed of 3 TiO6 octahedral layers and a (Bi2O2)2+ layer. The electric field between the (Bi2O2)2+ layer and the (Bi2Ti3O10)5− layer can prevent the recombination of holes and electrons so as to increase photocatalytic activity. The time required to degrade rhodamine B is slightly longer than that of methyl orange [26]. This can be caused by the structure of rhodamine B which has many aromatic rings and its larger molecular size [39] which makes it more difficult to degrade.

Kinetic studies
The kinetics of the photocatalysis was observed using Langmuir-Hinshelwood 1st order kinetic model. The kinetic model was calculated using [11]:

\[
\ln \left(\frac{C_t}{C_i} \right) = -k_1 t + b
\]

where \(C_t\) represents concentration (mg/L) of rhodamine B at t min, \(C_i\) represents initial concentration (mg/L) of rhodamine B, b represents a constant, and \(k_1\) (1/min) is the rate constant.

Figure 6 shows the kinetic model listed in Table 5. As shown in Table 5, bismuth titanate has a greater reaction kinetic constant than TiO2. The \(k_1\) value of bismuth titanate is 0.0162 1/min, with a correlation coefficient of 0.9637 which indicates that the kinetic model used is appropriate [40]. Compared to TiO2, bismuth titanate has a reaction efficiency of 120 % better from the value of the rate constant.
Table 5 Parameters of kinetic models.

<table>
<thead>
<tr>
<th>Sample</th>
<th>k_1 (1/min)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bismuth titanate</td>
<td>0.0162</td>
<td>0.9637</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.0135</td>
<td>0.8838</td>
</tr>
</tbody>
</table>

Figure 6 Kinetic models for Langmuir-Hinshelwood 1st-order linear of rhodamine B degradation.

The catalytic activity in the photodegradation of rhodamine B is compared with the data that have been reported in the literature shown in Table 6, clearly showing that our data on photoactivity are compared with those published in the literature. The presence of heterophase can enhance the formation of electron synergistic effect, which effectively stimulates electron transfer from 1 phase to another [27].

Table 6 Comparison of various bismuth titanate photocatalytic activity with several previous reports in rhodamine B degradation.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Initial concentration of rhodamine B</th>
<th>Irradiation time (min)</th>
<th>Reaction constant (min$^{-1}$)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi$_4$Ti3O${12}$</td>
<td>10 mg/L</td>
<td>210</td>
<td>0.01400</td>
<td>[41]</td>
</tr>
<tr>
<td>Bi${12}$TiO${20}$</td>
<td>10 mg/L</td>
<td>210</td>
<td>0.01990</td>
<td>[41]</td>
</tr>
<tr>
<td>Bi$_2$Ti$_3$O$_7$ nanorods</td>
<td>10 mg/L</td>
<td>120</td>
<td>-</td>
<td>[42]</td>
</tr>
<tr>
<td>Bi$_4$Ti3O${12}$ nanosheets</td>
<td>6 mg/L</td>
<td>90</td>
<td>-</td>
<td>[43]</td>
</tr>
<tr>
<td>Bi$_2$WO$_6$</td>
<td>1.0×10$^{-5}$ M</td>
<td>180</td>
<td>0.00476</td>
<td>[44]</td>
</tr>
<tr>
<td>Bi4Ti3O${12}$/Bi${12}$Ti${0.9}$O${19.8}$</td>
<td>10 mg/L</td>
<td>240</td>
<td>0.01620</td>
<td>This work</td>
</tr>
</tbody>
</table>

Reusability
The stability of the photocatalyst during photoreaction is an important factor for practical applications. The stability test was investigated by carrying out a recycling reaction for photocatalysis of rhodamine B under light irradiation. The dried bismuth titanate was given the same treatment as before. Figure 7 shows that in the 1st round, the degradation ability is 98 %, after 3 times of use, the degradation ability is 93 %. This means that bismuth titanate composite has only decreased by 5 %. As for the TiO$_2$ photocatalyst, the degradation ability decreased by more, namely 7 %. In conclusion, synthesized bismuth titanate has a better potential to be developed as a commercial catalyst.
In this study, photocatalytic degradation of rhodamine B was carried out using bismuth titanate heterophase. Heterophase bismuth titanate was synthesized using the hydrothermal method from precursors Bi$_2$O$_3$ and TiO$_2$. The results showed 2 phases: The Bi$_4$Ti$_3$O$_{12}$ phase had a percentage of 78.2 % and the Bi$_{12}$Ti$_{0.9}$O$_{19.8}$ phase of 21.8 %. It is also known that Bi$_4$Ti$_3$O$_{12}$ has a smaller crystal size than Bi$_{12}$Ti$_{0.9}$O$_{19.8}$. In addition, bismuth titanate crystals have a smaller lattice volume than the standard from the previous literature. The percentage decrease in the concentration of rhodamine B with bismuth titanate heterophase is 99 % within 240 min and 120 % more efficient than TiO$_2$. From the ability to reuse, after 3 runs, bismuth titanate heterophase only had a 5 % decrease in degradation ability. These results indicate that bismuth titanate heterophase can be used as a new approach to remove rhodamine B compounds in wastewater.

Acknowledgements

The authors are grateful to Universitas Padjadjaran who has funded this work under Academic Leadership Grant (ALG) through project number 2203/UN6.3.1/PT.00/2022

References

P Dumronggrojthanath, T Thongtem, A Phuruangrat and S Thongtem. Synthesis and characterization of hierarchical multilayered flower-like assemblies of Ag doped Bi$_{2}$WO$_{6}$ and their photocatalytic activities. *Superlattices Microstruct.* 2013; 64, 196-203.