Temperature-Related Electronic Low-Lying States in Different Shapes In$_{1-y}$Ga$_y$N/GaN Double Quantum Wells under Size Effects

Walid Belaid1,2, Haddou El Ghazi1,3,*, Redouane En-Nadir1, Hamdi Şükür Kılıç2,4,5, Izeddine Zorkani1 and Anouar Jorio1

1Solid State Physics Laboratory (SSPL), Department of Physics, Faculty of Science, Mohammed Ben Abdellah University, Fes, Morocco
2Laser Spectroscopy Group (LSG), Department of Physics, Faculty of Science, University of Selçuk, Campus, Selçuklu, Konya, Turkey
3MPSI Group, ENSAM Laboratory, ENSAM, Hassan II University, Casablanca, Morocco
4University of Selçuk, Directorate of Laser Induced Proton Therapy Application and Research Center (Manager), Selçuklu, Konya, Turkey
5University of Selçuk, Directorate of High Technology Research and Application Center, Selçuklu, Konya, Turkey

(*Corresponding author’s e-mail: hadghazi@gmail.com)

Received: 5 June 2021, Revised: 27 July 2021, Accepted: 31 July 2021

Abstract

In this paper, we report the electronic states of hydrogenic impurity in InGaN/GaN double quantum wells (DQWs) with different shapes using a numerical procedure within the effective mass approximation. The effects of temperature, impurity position and size on the 1S-, 2S- and 2P-low-lying states are investigated for rectangular, parabolic and triangular finite potential confinements. Our results reveal that the binding energy versus the well width displays a maximum value around the effective Bohr radius and a larger value is obtained for rectangular compared to parabolic and triangular profiles. Moreover, regardless the size and impurity's position, it is found that the main impact of the temperature is to shrink the binding energy. It is obtained that the binding energy drop is about 3.48 meV for rectangular and 4.26 meV for both parabolic and triangular profiles. Moreover, as the impurity is moved from the right barrier center to the structure center, the 1S-binding energy improvement is about 77.6 % in rectangular whereas it exceeds 91.4 % for other profiles. It is established that the binding energy can be easily modulated by adjusting the temperature, structure size and impurity's position. The results we obtained agree quite well with the findings.

Keywords: Binding energy, Double quantum wells, Coupling, (In,Ga)N, Temperature

Introduction

Group-III nitrides inherent properties, such as its direct band-gap, adjustable from 0.64 to 3.38 eV [1, 2], radiation resistance [5] and high absorption coefficient [3,4], and also make the ternary (In,Ga)N compound semiconductor material an tremendous attractive candidate for photovoltaic applications, light-emitting diodes (LEDs) and Laser diodes [6]. Due to the importance of low-dimensional Nano-systems in the development of new semiconductor devices and applications, the effects of external perturbation such as electric field, magnetic field, temperature and pressure on their physical and chemical properties constitute a subject of considerable interest from both theoretical and technological point of view. Through several papers in the literature [7-28], the temperature effect modifying the energy levels, the masses of carriers; the dielectric constant, the potential barrier, the stability of exciton and the Γ–X band cross over on the ground-state as well as of some low-lying excited states is reported. This effect has been investigated by Elabsy [9] and Nithiananthi and Jayakumar [10] in a GaAs/Ga$_{1-x}$Al$_x$As quantum well, and Khordad [11] in a V-groove GaAs/Ga$_{1-x}$Al$_x$As quantum wire. Recently, the electronic properties were examined using different methods: Variational approach [12-15], finite element method [16,17], finite difference method [18], matrix
diagonalization method [19] and density functional theory [20]. However, few papers have dealt with the electronic properties of multiple low-dimensional systems in the presence of a hydrogenic donor impurity [21-24]. Multiple quantum wells (MQWs) based on InGaN/GaN structures with high structural and optical qualities have also been successfully fabricated and extensively investigated [25]. In addition, based on symmetric and asymmetric multiple quantum wells (MQWs) systems, several theoretical papers are reported in the literature such as double inverse parabolic quantum wells (DIPQW) [26], double symmetric and asymmetric quantum wells [27,28].

In this paper, we focused on the effects of the temperature, impurity position, coupling (Middle) and side barrier widths on the binding energy of ground state and low-lying excited states in the presence of a hydrogenic impurity in (In,Ga)N/GaN rectangular (DRQW), parabolic (DPQW) and triangular (DTQW) double quantum wells. This work is organized as follows: We briefly describe the theoretical model in section 2 while the numerical results are presented and discussed in section 3. Finally, the conclusion is given in section 4.

Theoretical framework

In the present work we deal with an on-center hydrogenic shallow-donor impurity in WZ (In,Ga)N/GaN rectangular (DRQW), parabolic (DPQW) and triangular (DTQW) double quantum wells of a height \(V_0(x,T) \), side barriers width \(L \), coupling barrier width \(H \) and a well width \(l \). The description of the nanostructures under study is included in Figure 1 and the corresponding confinement potential shapes are given in Eqs. (2) - (4).

Within the framework of single-band effective-mass and the parabolic band approximations, the electron Hamiltonian in the presence of a shallow-donor impurity in the \(\text{In}_x\text{Ga}_{1-x}\text{N} \) nanostructures can be written as:

\[
H = -\frac{\hbar^2}{2} \nabla \left(\frac{1}{m^*(x,z,T)} \nabla \right) - \frac{e^2}{\varepsilon_0 \varepsilon^* (x,z,T)} |\vec{r} - \vec{r}_0| + V(z)
\]

(1)

\(e \) is the electron charge, \(\hbar \) is the reduced Planck constant, \(x \) measures the Indium fraction in the ternary, \(\varepsilon_0 \) is the vacuum permittivity, \(z \) is the growth direction coordinate, \(|\vec{r} - \vec{r}_0| \) is the electron-impurity distance and \(V(z) \) is the finite potential barrier given for each profile as:

Double rectangular quantum wells

\[
V_r(z) = \begin{cases}
0 & L < z < L + l \text{ and } L + H + l < z < L + H + 2l \\
V_0(x,T) & \text{elsewhere}
\end{cases}
\]

(2)

Double parabolic quantum wells

\[
V_p(z) = \begin{cases}
\left(\frac{4}{7} \right) \left(z - L - \frac{l}{2} \right)^2 V_0(x,T) & L < z < L + l \\
\left(\frac{4}{7} \right) \left(z - L - H - \frac{3l}{2} \right)^2 V_0(x,T) & L + H + l < z < L + H + 2l \\
V_0(x,T) & \text{elsewhere}
\end{cases}
\]

(3)

Double triangular quantum wells
\[
V_t(z) = \begin{cases}
\left(\frac{z}{2} \right) \left(z - L - \frac{l}{2} \right) V_0(x, T) & \text{if } L < z < L + \frac{l}{2}, \\
\left(\frac{z}{2} \right) \left(z - L - \frac{l}{2} \right) V_0(x, T) & \text{if } L + \frac{l}{2} < z < L + l, \\
\left(\frac{z}{2} \right) \left(z - L - H - \frac{3l}{2} \right) V_0(x, T) & \text{if } L + H + l < z < L + H + 3 \frac{l}{2}, \\
\left(\frac{z}{2} \right) \left(z - L - H - \frac{3l}{2} \right) V_0(x, T) & \text{if } L + H + 3 \frac{l}{2} < z < L + H + 2l, \\
V_0(x, T) & \text{elsewhere}
\end{cases}
\]

\(V_0(x, T) = Q \cdot \Delta E_g(x, T) \) is the height of the potential barrier while \((Q = 0.7)\) and \(\Delta E_g(x, T)\) are, respectively the conduction band offset parameter and the difference between the band gap energies of \(\text{GaN}\) and \(\text{In}_x\text{Ga}_{1-x}N\) semiconductor materials.

According to \([29]\), the temperature-dependent band-gap energy is given as following:

\[
E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}
\]

(5)

For \(\text{In}_x\text{Ga}_{1-x}N\), the band-gap energy is obtained as the interpolation between \(\text{InN}\) and \(\text{GaN}\) corrected by the bowing parameter \((b = 1.40)\) \([30]\):

\[
E_{g}^{\text{In}_x\text{Ga}_{1-x}N}(x, T) = x \cdot E_{g}^{\text{InN}}(T) + (1 - x) \cdot E_{g}^{\text{GaN}}(T) - b \cdot (1 - x) \cdot x
\]

(6)

where, \(E_{g}^{\text{InN}}\) and \(E_{g}^{\text{GaN}}\) are respectively the band-gap energies of \(\text{InN}\) and \(\text{GaN}\), while \(b\) is the band-gap bowing parameter taking into account of band-gap non-linearity dependence as a function of the indium composition. In this paper, the parameters reported by Vurgaftam and Meyer \([7]\) listed in Table 1 are used in our calculation.

Table 1 The parameters used in the computation \([7]\).

<table>
<thead>
<tr>
<th>(E_{g}(0K)) (eV)</th>
<th>(\alpha) (meV · K(^{-1}))</th>
<th>(\beta) (K)</th>
<th>(\epsilon^*(300K)) ((\epsilon_B))</th>
<th>(C) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{GaN})</td>
<td>3.299</td>
<td>0.909</td>
<td>830</td>
<td>9.8</td>
</tr>
<tr>
<td>(\text{InN})</td>
<td>0.78</td>
<td>0.245</td>
<td>624</td>
<td>13.7</td>
</tr>
</tbody>
</table>

The indium composition dependence of \(\text{In}_x\text{Ga}_{1-x}N\) electron mass is calculated by linear interpolation between \(\text{GaN}\) and \(\text{InN}\). It is given as:

\[
m^\ast(x, z, T) = \begin{cases}
x \cdot m_{\text{InN}}^\ast(T) + (1 - x) \cdot m_{\text{GaN}}^\ast(T) & \text{in the wells} \\
m_{\text{GaN}}^\ast(T) & \text{in the barriers}
\end{cases}
\]

(7)

\(m^\ast(T)\) is the temperature-dependent effective-mass. According to \(\vec{k} \cdot \vec{p}\) theory, the temperature-dependent effective-mass is given by the formulas \([30]\):

\[
\frac{m_0}{m^\ast(T)} = 1 + \frac{C}{E_g(T)}
\]

(8)

\(E_g(T)\) is the band-gap temperature dependency, \(m_0\) is the free electron mass while \(C\) is the energy related to the momentum matrix element, and it is a constant for each material.

The relative dielectric constants \(\epsilon^\ast(x, z, T)\) for \(\text{GaN}\) and \(\text{In}_x\text{Ga}_{1-x}N\) versus the temperature are given by \([31]\).
\[\varepsilon^*(x, z, T) = \varepsilon_{\text{GaN}}(300K) \cdot \exp\left[\frac{T-300}{10^4}\right] \quad \text{in the barriers} \] (9)

\[\varepsilon^*(x, z, T) = \varepsilon_{\text{GaN}}(T) + 6.4 \cdot x \quad \text{in the wells} \] (10)

At the interface between the well and the barrier, there is an overlap between GaN and InGaN materials. Thus, as we adopted in our recent work [32], the relative dielectric constant at the interfaces is expressed as follows:

\[\varepsilon_{\text{interfaces}} = \sqrt{\varepsilon_{\text{GaN}} \cdot \varepsilon_{\text{InGaN}}} \] (11)

The binding energy known as the difference between the eigen-state without and with impurity is computed for 1S, 2S- and 2P-states.

For such a problem, the analytical Schrödinger equation solving is impossible and subsequently, the finite difference method is adopted to obtain the eigen-values and their corresponding eigen-functions of the Hamiltonian given in Eq. (12). For this reason, a mono-directional mesh (calculation grid) composed of 5N + 1 points is considered. We have characterized each layer (Well, barrier) by a different discretization step. We have assigned \(h_w = \frac{l}{N} \), \(h_b = \frac{H}{N} \) and \(h_{\text{b}} = \frac{l}{N} \) for the well, coupling barrier and side-barriers, respectively. So, the mesh’s nodes of all layers are expressed, respectively as \(z_j = j h_b \), \(z_j = L + j h_w \), \(z_j = L + l + j h_l \), \(z_j = L + l + H + j h_w \) and \(z_j = L + H + 2l + j h_b \) for \(0 \leq j \leq N \).

The first and second derivatives of the particle wave-function are given as following:

\[
\begin{align*}
\frac{d^2 \psi_i(z)}{dz^2} \bigg|_{z=z_j} &= \frac{\psi_{i+1}^j - 2 \psi_i^j + \psi_{i-1}^j}{h^2} \\
\frac{d \psi_i(z)}{dz} \bigg|_{z=z_j} &= \frac{\psi_{i+1}^j - \psi_i^j}{h}
\end{align*}
\] (12)

Numerical results and discussion

In this section, we present numerical results for the temperature, size, impurity position and coupling effects on the ground, first and second excited states in finite InGaN/GaN rectangular (DRQW), parabolic (DPQW) and triangular (DTQW) double quantum wells. The results are given in the effective units, i.e., the effective Bohr radius \(a_b^* = \frac{\varepsilon_0 \hbar^2}{m^* e^2} \) as the unit of length.

In order to facilitate the interpretation of the binding energy results, we have presented primarily the probability densities of all states in **Figure 1**. The main common characteristic is the fact that the electronic wave-functions are symmetrically distributed. In addition, the ground and first excited states are mainly located in the wells (InGaN regions) while the second excited one is principally located in the barrier (GaN) especially for rectangular-shape. However, for parabolic and triangular shapes, the states are located in the barriers due to the strong confinement compared to rectangular profile.
Figure 1 Probability density of 1s, 2s and 2p states in finite InGaN/GaN non-center donor impurity DRQW, DPQW and DTQW as a function of the growth direction. The potential profile shapes are included.

In Figure 2, we present our computed results for the ground, first and second excited states energies in the presence (a) absence (b) of the impurity for different In$_x$Ga$_{1-x}$N/GaN DQW-shapes versus the well width. These results are obtained for $T = 0, 300$ and 900 K and ($L = 1, H = 1.5$). As illustrated by these figures, for a fixed temperature the electron-energy monotonically decreases according to the well width as expected. The curves show similar behavior for all structures for both cases with and without impurity. It is clearly seen that the presence of the impurity leads to the drop of the electron energy which can be due to the Coulomb interaction. It is obviously shown that the electron energy decreases when the temperature increases for all the well widths. This can be assigned to the effective-mass, dielectric constant and potential barrier height dependence according to the temperature as reported in Table 2. It is important to mention that this behavior is quite significant in parabolic and triangular DQWs compared to rectangular one.
Figure 2 Variation of the donor 1S, 2S and 2P-states energies versus the well width in a GaN/In_{0.25}Ga_{0.75}N rectangular, parabolic and triangular DQWs for fixed parameters $L = 1$ and $H = 1.5$ in the presence (a) absence (b) of the impurity at $T = 0\, K$ (solid curve), $T = 300\, K$ (dashed curve) and $T = 900\, K$ (dotted curve).
Table 2 The variation of the barrier height, effective mass and dielectric constant for both well and barrier regions versus the temperature for In$_1$Ga$_{0.9}$N/GaN DQWs.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Effective mass (m_0)</th>
<th>Dielectric constant (ε_0)</th>
<th>Barrier height (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>well</td>
<td>Barrier</td>
<td>barrier</td>
</tr>
<tr>
<td>0</td>
<td>0.182</td>
<td>0.199</td>
<td>10.15</td>
</tr>
<tr>
<td>300</td>
<td>0.179</td>
<td>0.196</td>
<td>10.43</td>
</tr>
<tr>
<td>900</td>
<td>0.168</td>
<td>0.184</td>
<td>11.04</td>
</tr>
</tbody>
</table>

Figure 3 exhibits the variations of 1S-, 2S- and 2P-states binding energies in DRQWs, DPQWs and DTQWs according to the well width for 3 different values of the temperature. This figure indicates that with decreasing the well width, the binding energy increases reaching a maximum value around the effective Bohr radius and then decreases. The physical reason can be given as follows: A well width diminishing leads to an increment of the quantum localization of the electron wave function which reduces the mean relative electron - impurity distance. Then the binding energy can only increases. Additionally, the behavior of the 2P-state is quite different from 1S and 2S states. This result is in good agreement with those reported in [33-35]. Moreover, it can be seen that the temperature increasing induces a noteworthy drop of the binding energy for all well widths. According to Table 2, one can deduce that with temperature increasing the kinetic and potential barrier terms (Eq. (1)) are found to be dropped while the electro-impurity Coulomb interaction is enhanced. Our obtained results show that diminishing of the electron energy in the presence of the impurity is less than that in its absence. Our findings are in good agreement with those reported in [36].

Figure 3 The 1s, 2s and 2p states-binding energy E_b as a function of the well width in a GaN/In$_1$Ga$_{0.9}$NDQW, DPQW and DTQW for fixed parameters $L = 1$ and $H = 1.5$, for different temperature values $T = 0$ K (solid curve), $T = 300$ K (dashed curve) and $T = 900$ K (dotted curve).
To show more the influence of the impurity position on the binding energy, we report in Figure 4 the variations of this latter according to the temperature for all states and all shapes. As demonstrated in Figure 3, the binding energy decreases as the temperature increases for a fixed impurity position. For instance, the on-center impurity binding energy difference $E_{b}^{1s}(0K) - E_{b}^{1s}(900K)$ is equal to 3.48 meV for DRQWs, and 4.26 meV for both DPQWs and DTQWs. Additionally, it is clearly seen that E_{b} is the largest for the impurity located at the structure’s center while a significant drop is illustrated as this latter moves far away. This result is in good conformity with those reported in [9,10]. For instance, as the impurity is displaced from the right barrier center to the structure center, $E_{b}^{1s}(T = 0K)$ improvement is about 77.6 % in DRQWs whereas it exceeds 91.4 % in DPQWs and DTQWs.

Finally, we report in Figure 5 the variation of binding energy of an on-center shallow donor impurity versus the side barrier width for diverse values of the coupling barrier width (H) and fixed parameters $x = 0.1$ and $T = 300 K$. The behavior of the ground state binding energy as a function of L is similar to that found in our previous work [37] for simple and double rectangular QWs, i.e., the binding energy augments (drops) with decreasing the barrier width for a low (strong) confinement regime. The physical reason is that for strong confinement, the entire wave function is in the barrier, the more the barrier width increases the more the wave function spreads in the barrier which reduces the binding energy. In parallel, for low confinement, with increasing the barrier width the wave-function spread in the barrier diminishes which leads to enhance the binding energy. The same figure (inset) contains the variation of the 2S and 2P states binding energy versus the barrier width. It increases for reaching a maximum and then it decreases as the barrier width increases. Moreover, the binding energy drops as the coupling barrier width increases. For instance, the 1S-binding energy drop rate is about 8.5 % in DRQW and 20.8 % in both DPQW and DTQW. This result can be attributed to the lowering of the wave-functions overlapping in both wells.
Figure 5 The ground, 2S and 2P states binding energy of an on-center hydrogenic impurity as a function of the side barrier’s width of DRQWs, DPQWs and DTQWs for different coupling barrier widths $H = 0.5, 1.0$ and 1.5 with an indium content $x = 0.1, l = 2$ and $T = 300 \, K$.

Conclusions

Within the effective-mass and parabolic band approximations, the 1S, 2S- and 2P-states energies with and without the impurity have been calculated in InGaN/GaN DQWs. The temperature, size and impurity’s position effects are investigated for finite rectangular, parabolic and triangular confinement potential-shapes. The effective-mass, dielectric constant, band-gap energy and potential barrier temperature dependencies have been considered. Our obtained results reveal that: The binding energy is enhanced versus the coupling effect. It is reduced as a function of displacement of the impurity far away from the structure center. A significant binding energy drop is shown versus the temperature increasing. The binding energy is the highest in DPQWs and DTQWs compared to DRQWs. We believe that our study makes an important contribution to the literature. We hope that these calculation results can inspire and stimulate further researches for optoelectronic device applications related to the group of III-nitride materials.

References

