A New Study on the Effect of Pure Anatase TiO₂ Film Thickness on Gentian Violet Photodegradation Under Sunlight: Considering the Effect of Hole Scavengers

Amer Mekkaoui, Elhachmi Guettaf Temam*, Saad Rahmane and Brahim Gasmi

Physics Laboratory of Thin Layers and Applications, University Mohamed Khider Biskra, Biskra 07000, Algeria

*Corresponding author’s e-mail: elhachemi.guettaf@univ-biskra.dz

Received: 17 April 2022, Revised: 25 May 2022, Accepted: 1 June 2022, Published: 28 November 2022

Abstract

In this paper, pure anatase TiO₂ thin films were grown on glass substrates by using sol-gel dip-coating method. To study the physical, chemical and optical properties of the deposits, TiO₂ thin films were synthesized with thickness (241.5, 258.19, 230.33 and 302.35 nm). XRD patterns show that TiO₂ films were grown with unique anatase phase (101). The photocatalytic test shows that film (~ 302 nm) gives high photodegradation of gentian violet (GV) under sunlight irradiation due to the low number of defect sites. The increase in film thickness and the decrease of surface roughness and crystal size decrease the number of defect sites in the material which lead to low recombination rate of charge carriers. The use of Ag⁺ as hole scavenger increases the photocatalytic activity 4.75 times within the first hour. The photocatalysis process showed that Ag⁺ can be reduced on the surface of photoactivated TiO₂ thin films to obtain sun-photodeposited/dip-coated AgO/TiO₂ (p-n) heterojunction.

Keywords: Dip-coating, Film thickness, TiO₂, Anatase, Gentian violet, Photocatalysis, Sun-photodeposition

Introduction

Technological and industrial development have contributed to many human life requirements; on the other hand, they have polluted the environment. Liquid industrial wastes containing dyes are thrown into the seas, rivers, and groundwater, which led to negative repercussions on human health. In recent years, several researches have been done on TiO₂ photocatalysis with the aim of developing methods to purify water [1-3]. Many investigations are mainly focused on TiO₂ material as photocatalysts for organic pollutants breakdown under ultraviolet [4-6] or sunlight irradiations [7-12]. The photocatalyst is inexpensive, readily available, non-toxic, chemically and mechanically stable.

The photocatalytic applications of TiO₂ are translation of their attractive properties such as high transmission in the visible region [13], cost-effectiveness, suitable valence band and conduction band positions, non-toxicity, strong oxidizing power and long-term stability. TiO₂ is an n-type semiconductor which can be crystallized in 3 different phases: anatase, brookite and rutile [14]. Rutile is the most stable phase than anatase and brookite [15]. Actually, the photocatalytic activity of TiO₂ is strongly dependent on its film thickness, phase structure, crystal size, and surface roughness and morphology. Rutile (3.0 eV) has higher absorbance ability under sun light than anatase (3.2 eV) due to tighter band gap. Anatase phase has a higher surface adsorption capacity to hydroxyl groups and a lower charge carrier recombination rate than rutile. Nanostructured TiO₂, particularly in the anatase form, exhibits photocatalytic activity under ultraviolet (UV) irradiation [16]. This photocactivity is reportedly most pronounced at the (001) planes of anatase [17].

However, the main factors that limit the photoactivity of pure anatase TiO₂ thin films are the rapid recombination of charge carriers (e⁻/h⁺) and the low roughness and porosity of the surface. Although the synthesis of rough TiO₂ thin films with porous structures and low crystallite size increase the number of surface sites for adsorption and breakdown of organic pollutants, it may raise the number of defect sites. The defect sites can trap the charge carriers which enhance the (e⁻/h⁺) recombination rate. This is a loss for photocatalysis process [2]. The number of defect sites can be reduced by several methods, namely,
increase film thickness, coupling with other semiconductors, doping and co-doping with metallic or nonmetallic ions [18-23].

In previous studies, the increase of film thickness has been proved to be a successful factor to improve the photoactivation of TiO$_2$ thin film. For example, Negishi et al. [24] studied the effect of TiO$_2$ films thickness by increasing number of dips and compared their photocatalytic activity for acetic acid under UV light with TiO$_2$ P-25 powder. They found that the photoactivity of TiO$_2$ films with high thickness (380 nm) is similar to that of P-25 powder. In other study, they disclosed that the photodecomposition of NO$_2$ increases with the increase of TiO$_2$ film thickness to 1 µm [25].

In the literature, most studies were focused on TiO$_2$ content, deposition technique, annealing temperature, doping or co-doping with other metals [26-29], while the effect of film thickness on photocatalytic properties of TiO$_2$ films is relatively few.

Herein, for the first time, the effect of film thickness on the photocatalytic activity of pure anatase TiO$_2$ films under sunlight irradiations has studied and explained. This work investigates the effect of film thickness on the structure, morphology, and optical properties of thin TiO$_2$ films dip-coated on glass substrates. It is found that 302 nm is an appropriate thickness for gentian violet (GV) high photodegradation under sunlight irradiations. Based on these findings, we have also studied the effect of Ag$^+$ and Glycerol as hole scavengers on the photocatalytic performance of TiO$_2$ thin films. The possibility of synthesizing sun-photodeposited/dipcoated (p-n) AgO/TiO$_2$ heterojunction has discussed for the first time.

Materials and methods

As a solvent, isopropanol and ethanol were used. Glacial acetic acid (GAA) was employed as a chelating agent. All experiments were performed with double distilled water (DW). Titanium (IV) isopropoxide (Ti(OCH(CH$_3$)$_2$)$_4$ was the precursor. As received from Sigma Aldrich, the chemical materials were used.

For the synthesis of TiO$_2$ thin films using the sol-gel dip coating method, 7 mL of titanium (IV) isopropoxide was dissolved in 10 mL of isopropanol. 4 mL of GAA was added dropwise to the sol with vigorous stirring. After 2 h, 29 mL of ethanol was added to give 50 mL of sol-gel and a dip-coated film of constant surface area (20 cm2). The glass substrates were washed with boiling sulfuric acid solution (DW: H$_2$SO$_4$:1:10), then washed with DW and rinsed with acetone. Finally, rinse with distilled water. To obtain different film thickness, the substrates were soaked for different soaking times (30, 60, 90 and 120 s). The substrate was dipped and pulled out at a speed of 1 mm.s$^{-1}$, and dried at 100 °C for 10 min. This process was repeated 5 times to obtain a crystalline film. The thin TiO$_2$ films were calcined at 450 °C for 3 h with a heating rate of 5 °C/min using a muffle furnace. After cooling to room temperature, the produced films were further characterized.

GV dye is selected as a model for wastewater pollutants. The removal of GV using TiO$_2$ photocatalysis was investigated under sunlight exposure. The sample (20 cm2) was immersed in 100 mL GV solution (2 ppm), protected from light for 2 h to reach the adsorption equilibrium, and the photodegradation test was carried out from 11:00 to 16:00. In these experiments, the GV solution was stirred at a constant speed (250 rpm). To improve the removal of GV, 0.1 M of both silver nitrate (Ag) and glycerol (Gl) were added to the contaminated solution as electron-hole scavengers. The samples used in this test were the ones that provided the best results without the use of electron-hole scavengers.

Results and discussion

The crystal structure of TiO$_2$ thin film is analyzed by XRD pattern as shown in Figure 1. All the films exhibit a tetragonal crystal structure with single anatase phase. No other phases were detected showing the purity of the produced samples. This is due to the fact that all the films were heated at the same temperature (450 °C) and the difference in film thickness between the lowest and the highest is not too great. It is evident that only one peak is observed at 25.4 ° corresponding to the (101) diffraction plane (JCPDS: 00-002-0387). The high intensity of the peaks indicates high crystallinity. Crystal size is one of the important factors influencing the photocatalytic activity of the material. The crystal size was estimated based on the effective crystal dimension D computed using Debye-Scherrer equation [30,31]:

\[
D = \frac{K \lambda}{\beta \cdot \cos \theta}
\]
where D is crystalline size, K is the Scherrer constant, λ is the incident wavelength of X-ray (1.5406 Å), β is the full width at half maximum intensity and θ is the diffraction angle. When the material grain size is small, the photocatalytic activity is very significant [32-34]. Table 1 indicates that films dip-coated at 120 s have the smallest crystal size (18.2 nm) which perhaps promise for high photocatalytic activity. All the films show low crystal size ($D < 24$ nm) confirming the nanostructure growth of the films.

![Figure 1 XRD patterns of TiO$_2$ based thin films.](image)

Table 1 Summary of analytical data.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Dippings time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Crystallographic Phase</td>
<td>-</td>
<td>anatase</td>
</tr>
<tr>
<td>Crystal Size</td>
<td>nm</td>
<td>23,1</td>
</tr>
<tr>
<td>Surface Roughness</td>
<td>nm</td>
<td>25.9</td>
</tr>
<tr>
<td>Film Thickness</td>
<td>nm</td>
<td>241.5</td>
</tr>
<tr>
<td>Transmission in Visible Range</td>
<td>%</td>
<td>~81</td>
</tr>
<tr>
<td>Optical Indirect Band Gap</td>
<td>eV</td>
<td>3.26</td>
</tr>
<tr>
<td>Si Content</td>
<td>wt%</td>
<td>47.21</td>
</tr>
<tr>
<td>O Content</td>
<td>wt%</td>
<td>49.82</td>
</tr>
<tr>
<td>Ti Content</td>
<td>wt%</td>
<td>2.97</td>
</tr>
<tr>
<td>Photodegradation rate</td>
<td>%</td>
<td>~76</td>
</tr>
</tbody>
</table>
Figure 2 AFM micrographs of TiO$_2$ thin films synthesized at different dipping time; (a) 30 s, (b) 60 s, (c) 90 s, and (d) 120 s.

SEM images of TiO$_2$ thin films are shown in Figure 3. The surface structure of the films is heterogeneous and fissured which enhances the specific surface area and results in high adsorption charge of dyes on the samples surfaces. Hence, the photocatalysis is significant. EDX analyses show a difference of the oxygen content in TiO$_2$ thin films as shown in Figure 3. As shown in Table 1, the oxygen content increases with the increase of film thickness. The increase in oxygen content in thin films increases its transmittance, and thus, giving high band gap energy (E$_g$) value [37]. The O content in TiO$_2$ thin films is in the range 37-49 wt.% which leads to high transmittance in the visible range (Table 1). The thickness (t) of TiO$_2$ thin films was estimated by the gravimetric method using the relation:

$$t = \frac{M}{g.A}$$ \hspace{1cm} (2)

Where t is the films thickness (nm), A is the surface area of the films (nm2), M is the mass of the films (g), and g is the density of the film material (g.nm$^{-3}$) [38]. Table 1 shows that films thickness increases by increasing dipping time. The films thickness is in the range of 241-302 nm.
Figure 3 SEM and EDX analyses of TiO$_2$ films produced at different dipping time; (a) 30 s, (b) 60 s, (c) 90 s, and (d) 120 s.

Figure 4 shows the optical transmission spectra of the films and Tauc plot for the optical band gap (Eg). The transmission spectra show high transparency in the visible region for all the TiO$_2$ thin films. These films have transmittance values greater than 80%. The highest transmittance value is for TiO$_2$ with a high film thickness. It is tempting to conclude that the average transmittance is a function of film thickness (Table 1). The optical indirect band gap was estimated using Tauc and Menth method given by relation Eqs. (3) and (4);

\[(ahv)^{1/2} = C(hv - Eg)\] \hspace{1cm} (3)
\[\alpha = \frac{2}{t} \ln\left(\frac{T}{100}\right)\] \hspace{1cm} (4)
where α is the absorption coefficient (m$^{-1}$) (Eq. 4), that should be identified by the Eq. 4, h is Planck’s constant (4.136×10^{-15} eV.s), ν is Frequency of light (s$^{-1}$), C is a Constant, E_g is Optical indirect band gap (eV), t is the film thickness (m) and T is the optical transmittance (%) [39]. The band gap of the films is slightly increased with the increase of film thickness. Based on the literature [14,17], the anatase phase has a wide bandgap than in rutile and brookite phases, which suggests a high photocatalytic activity under constant photonic irradiation energy. This seems contradictory, whereas, the wider bandgap, the higher photonic energy required to migrate the electrons from valence to conductivity level.

$$E_C - E_V = E_g = E_A = E_0$$ \hspace{1cm} (5)

$$E_A > E_R > E_B$$ \hspace{1cm} (6)

Where, E_C and E_V are conduction and valence level energy, respectively. E_g is the bandgap energy of the material. E_A, E_R and E_B are the anatase, rutile and brookite bandgap energies. E_0 is the release factor (bandgap energy) that is defined as the energy required for electron migration. In order to stimulate an oxide material, the following condition must be met;

$$E_{ph} > E_0$$ \hspace{1cm} (7)

Where, E_{ph} is the photonic energy. From these 3 equations we can conclude that the wider bandgap the higher required activation photonic energy. Hence the recombination rate is low. Moreover, the higher photocatalytic activity of anatase phase than rutile and brookite phases is due to its low recombination rate as a stable electron and whole generation [40,41]. Zhang et al. [14] reported that indirect band gap anatase exhibits a longer life time of photoexcited electrons and holes than direct band gap rutile and brookite because the direct transitions of photogenerated electrons from the conduction band (CB) to valence band (VB) of anatase TiO$_2$ is impossible. Furthermore, anatase has the lightest average effective mass of photogenerated electrons and holes as compared to rutile and brookite [14].

Figure 4(a) UV-VIS optical transmission spectra of TiO$_2$ thin films, (b) Tauc plot for the optical band gap.

The photocatalytic activity of TiO$_2$ thin films was evaluated through the photodegradation of GV (2 ppm) in an aqueous solution under sunlight irradiation. Figure 5(a) shows that GV decomposes continuously throughout the entire irradiation time. The rate of degradation varies according to the hour of irradiation. The photocatalytic efficiency (γ) is determined from the following equation:

$$\gamma\% = \frac{A_0 - A_t}{A_0}$$ \hspace{1cm} (8)

where, A_0 and A_t are the absorbance at 582 nm of GV at $t = 0$ and t h, respectively. The degree of GV degradation is in the order 84 > 80 > 76 > 72 % corresponding to 120 > 60 > 30 > 90 s of dipping time as shown in Figure 5(b). All the films show high photocatalytic activity that varies based on the dip.
duration, which affects the thickness of the film. Overall, the best solar photocatalyst corresponds to the longer dip duration. **Figure 5(c)** shows that the photodegradation rate of GV is strongly dependent on the film thickness. This finding confirmed several previous literary studies [24,25]. A thorough analysis of this process is required to understand the effect of film thickness on photocatalytic activity. Under solar irradiation, electron-hole pairs are generated and initiate the migration of charge carriers to the film surface, thereby, triggering the redox reactions of GV breakdown. Defect sites found in TiO$_2$ films can trap these charge carriers and increase their recombination. Hence, the GV decomposition process is reduced. The defect sites are ones of the most important factors affecting the recombination of charge carriers, and thus, affecting the breakdown of organic pollutants [2]. In turn, the number of defect sites is strongly dependent on film thickness, grain refinements and surface roughness. Increasing in film thickness, decreasing in surface roughness and refinement of crystal size reduce the number of defect sites and then enhance the concentration of charge carriers on the surface of the materials. The film dip-coated at 120 s has the lowest crystal size and surface roughness and the highest thickness.

Figure 5(d) shows the degradation rate of GV in the presence of Ag$^+$ and Glycerol as hole-scavengers. We observe that the presence of Glycerol decreases the photodegradation of GV although it has shown significant results in several other literary studies [42,43]. The addition of glycerol increases the solubility of GV in water, thereby, inhibiting the adsorption equilibrium. The photodegradation rate in the presence of Ag$^+$ achieves 95% in the first hour which increases the decomposition of GV for 4.75 times. Unintentionally, we observed another phenomenon. The color of the sample is dark gray, indicating that silver has been deposited on the titanium oxide film (Eq.10). This process called solar photodeposition that produces a (p-n) heterojunction AgO/TiO$_2$ films after annealing in the atmosphere or under oxygen-supplied conditions. This process has 2 objectives in so-called killing 2 birds with 1 stone. The first is to purify water from silver metal; the second is to produce heterojunction AgO/TiO$_2$ film. We look forward to the experience of photodeposited/dip-coated AgO/TiO$_2$ films and study their properties in the upcoming works. The photodeposition of Ag metal on sun-photoactivated TiO$_2$ films is summarized by Eqs. (9) and (10);

\[
\begin{align*}
\text{TiO}_2 & \rightarrow \text{TiO}_2 \left(\frac{e_{CB}^- + h_{VB}^+}{n_p} \right) \\
 e_{CB}^- + Ag^+ & \rightarrow Ag
\end{align*}
\]

Figure 5(a) Variation of UV-vis spectra of GV during photodegradation over TiO$_2$ thin films; (b) Plot of photocatalytic efficiency versus the irradiation time; (c) plot of film thickness versus photodegradation rate; (d) Degradation rate in the presence of hole-scavengers.
Conclusions

In this paper, the photocatalytic properties nanostructured pure anatase TiO$_2$ thin films synthesized via sol-gel dip-coating method which were investigated via the photodegradation of GV under sunlight irradiations. The effect of film thickness on the photocatalytic activity was discussed in depth. Structural and surface analysis showed that the crystal size and surface roughness decreased with increasing dipping time. The SEM images show that rough and fissured surface morphology can enhance the adsorption of GV on the surface of TiO$_2$ films. All films showed high transmittance in the visible range. It has been found that increasing the dipping time increases the film thickness and thus, having the opportunity to reduce the number of defect sites in the TiO$_2$ film. Therefore, the recombination rate is low. Using Ag$^+$ as a hole scavenger increases the photocatalytic activity 4.75 times within the first hour. We must point out that another phenomenon has occurred, namely, the reduction of silver ions on the surface of sun-photoactivated TiO$_2$ films, resulting in sun-photodeposited/dip-coated AgO/TiO$_2$ (p-n) heterojunction.

Acknowledgements

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

