
TRENDS IN SCIENCES 2022; 19(8): 3472 RESEARCH ARTICLE
https://doi.org/10.48048/tis.2022.3472

Test Case Generation for Arduino Programming Instructions using
Functional Block Diagrams

Mani Padmanabhan

Faculty of Computer Applications, Vellore Institute of Technology, Vellore, Tamil Nadu, India

(Corresponding author’s e-mail: mani.p@vit.ac.in)

Received: 10 November 2020, Revised: 18 May 2021, Accepted: 28 May 2021

Abstract

 Interconnecting different wireless sensor and actuator network in the real-time systems are more
demanding for testing. High capability is needed to enable efficient methodologies for testing. The major
source of effective testing is the identification of test cases. Programming instruction based test case
generation has not well suitable for Arduino real-time systems, that an open statement in the research
community. This paper introduces a functional block diagram based test case generation framework to
facilitate the functional evaluation of Arduino real-time systems. It makes from the functional block
diagram. First, block diagrams are converted to the Event Sequence Graph, then the event node is
minimized, the test cases are generated minimized event. The presented methodology has validated with
the Arduino programming language. This proposed approach quantified with five sensors based Arduino
real-time system experiments shows that based on the validated test cases; the development time and cost
of the Arduino real-time systems have dynamically reduced.
Keywords: Software testing, Test case generation, Functional block diagrams, Software validation,
Software test path generation

Introduction

The COVID 19 pandemic condition shows the essentials of human-less automatic technology in all
the sectors. Arduino based real-time system development is a major activity in 2020. Most of the
electronics projects are building based on the open-source Arduino. The Arduino IDE (Integrated
Development Environment) possible to access both a physical programmable circuit board or
microcontroller and software. The Arduino physical board has compatible to upload the programming
instruction from the computer [1]. Arduino software development based on system design. The major
design for the Arduino based real-time systems is functional block diagrams. The automatic technology
has to describe more in the development phase for the quality software programs. Producing high-quality
software is becoming the main problem in real-time systems design due to the difficulty of real-time
inputs [2].

The quality of the Arduino real-time system software measured based on the testing results. Testing
is the process of identifying the bugs or error as much as possible or verify the process based on the input
and output. The sensor-based Arduino real-time system is necessary to undertake effective testing to
produce reliable systems. In many Arduino real-time system software development projects spending 50
% of the development time and effects in the error identification [12]. Most often, a tester is given a set of
tasks based on the code for verifying the event that can be performed in the IDE. Software testing is the
process of identify the bugs as much as possible meanwhile to reduce the cost of testing, test case
selection in the regression testing is an essential activity to ensure the correctness of modified versions of
software [23]. Figure 1 shows the classification of Arduino software testing.

Trends Sci. 2022; 19(8): 3472 2 of 10

Figure 1 Classification of Arduino software testing.

A novel method to generate test cases based on a diagrammatic representation of the system

behavior draws more attention in the research community. The detailed process of the system has
produced functional block diagrams. The current testing methodology based on code-based. Code-Based
Testing (CBT) generates test cases to test functionalities implemented in the Arduino IDE, so
functionalities missing from software design will not be tested [25]. Thus, code-based testing tests what
the source code does, rather than what it is supposed to do in real-time. A particularly important
advantage of using functional block diagrams to drive test cases at a development level to support testing
activities when source code is not available. A gap in the software test case generation research area
exists that can be fulfilled with these approaches. Figure 2 shows the major problem in the system-level
testing process for sensor-based Arduino real-time systems.

 Arduino block diagram  Arduino IDE  System level test cases

Figure 2 Test case verification using Arduino IDE.

The proposed methodology based on the functional block diagrams, the internal structures of the
program requires during the software testing. In this approach has used the event graph and linking table
for the test case generation then test cases are validated with internal structures of the Arduino
programming. Associated test case generation researches are described in section 2. The proposed test
case generation methodology with the Event Sequence Graph conversion algorithm is explained in
section 3. The experiment on various real-time applications using the proposed approach in section 4.
Conclusions are described in section 5. Figure 3 describes the event linking table based test case
generation. In the following section listed the related research based on the real-time systems.

Review of automated test case generation

This section delivers related evidence and concepts required to recognize the research work. In
software testing, test cases are primary elements to test the programs. The purpose of test case generation
is to reduce cost and human effort. Manual generation of large number of possible test cases and test data
is a difficult problem whereas automatic testing can work round the clock and reduce tiring manual work.
Mehrmand et al. (2011) emphasized that the most widely used area of testing is structural testing. It
considers the unit under test as a white box, which means, test design is based on the internal structure of
the program and requires programming skills. Mall et al. (2013) has presented the approach to generate

Software Testing

Specification-based
Testing

Program-based
Testing

Arduino IDE based

Test Cases

Test case verification

Trends Sci. 2022; 19(8): 3472 3 of 10

the code within class methods from UML. For this, they have built a novel graph model called sequence
integration graph (SIG). In contrast to the conventional graph model (i.e., control flow graph), the SIG
subsumes control flow graph and additionally contains method scope information of the interactions.

Wang et al. (2017) emphasized that continuous development of sensor based computer technology,
safety-critical embedded systems were applied in many areas of more and more complex structure and
function, once the failure of these systems will bring immeasurable social life and property losses. How to
effectively improve the reliability of embedded software has become focus of by the industry and
academia in general. Embedded software testing plays an important role in enhancing the credibility of
embedded software systems, and model-based statistical testing has been widely used because of its high
credibility and high efficiency at embedded process.

Table 1 Test case generations from diagrammatic representation.

Author Input Model Method Intermediate
Model

Coverage
Criteria

Cavarra et al. [19]

Class Diagram
State Diagram

Object Diagram

Traversal
Function

minimization

Formal
Behavioral
Description

Test graph
All traces paths

Ramler et al. [15]

State Diagram BFS Traversal State
transition table

Class
level testing

Samuel et al. [21]

Activity
Diagram

Bottom-up
Testing Strategy

Condition
classification

tree

Class methods

Wang et al. [18]

Sequence
Diagram

DFS,
Category partition

Scenario tree Event,
path, conditions

Ramler et al. (2012) presented the approach for test cases generation. In this research construct use
case specification model and sequence diagrams of the SUT. The finite automata, and Event deterministic
finite automata from sequence diagrams.

In proposed research has work differs from the above-mentioned research on the following grounds:
A unified form of event flow instruction for block diagram, demonstration of block diagram based test
case generation technique, comparison between block diagram based and code-based teat case generation
approaches with regard to the accuracy, safety and efficiency. However, the approach tackles the
challenges of test case validation of Arduino software.

Proposed approach

The objective measurement of test case quality is one of the key issues in software testing and has
been a major research area for the last 3 decades. In this section, a brief overview of the Arduino block
diagram notation and test case generation technique for sensor-based systems has been presented. The
Arduino block diagram describes the control flow between input variables and output variables [1].

Trends Sci. 2022; 19(8): 3472 4 of 10

Bidirectional and Unidirectional
Connection Lines

Figure 3 Basic symbols of Arduino block diagrams.

Arduino block diagram contains the common circuit diagrammatic representation even if the
complex systems. Arduino block diagrams are associated with a resistor, switch, transistor, LED, battery,
capacitor and wire. Arduino block diagrams are usually drawn to flow directional arrow. They define
what functions occur, in which order those functions can occur, and what alternative paths of execution
are available. Figure 3 provides basic symbols and more common electronic components in Arduino
block diagrams.

The sensor-based Arduino block diagrams to be the additional schematic symbols to show the
unique properties of the event in the Arduino IDE. The sensor events are combined in the command line
of the Arduino programming. The current test case generation methodology based on the functions and
command line in Arduino programming. The methodology has well suitable for the system level test
cases generation technique and validation process. In the system level validation may be more bugs and
mismatching results if the sensor and real-time events are not collected during the programming
development.

Programming instruction based test cases are verification of process in the real-time system but
functional block diagram based test cases are a validation process. In the proposed technique to generate
the test cases using Arduino block diagrams. First the approach covert the Arduino block diagram from
the software requirements.

Event Sequence Graph

Arduino block diagram  Proposed Methodology  Validation  Arduino IDE

Figure 4 Proposed test case validation methodology.

In the next step, using the proposed algorithm identify the event and linking a binary graph. Based
on the binary graph traversal operation select the block event items from the original graph to the new
ordered graph, then 3 edge tree structures are minimized. In the final step, test cases are generated from
the minimized event. The generated test cases are holding the input, process and output for the current
event. The test cases are validated using post programming instruction. Figure 3 describes the workflow
of the proposed methodology.

Arduino Event

based Test Cases

Event Linking Table
 Validation

Trends Sci. 2022; 19(8): 3472 5 of 10

Test case validation is the essential process of sensor-based Arduino real-time system development
for assuring the quality and reliability of updated software. Test case validation based on the event flow is
the technique of system-level testing to reduce the time and effort required for system-level testing. The
proposed validation methodology double way process to enhance the efficiency and effectiveness of the
Arduino RTS. In the subsection describe the Event Sequence Graph conversion from the block diagram.

Event Sequence Graph (EG) is a directed graph EG = 〈V1, V2, E1, E2〉, where V is a set of
nodes and E is a set of edges. The nodes in V are of 2 types: ‘unidirectional’ and ‘bidirectional’ where a
‘bidirectional node’ represents start or end. On the other hand, the edges are of 2 types: ‘input edge’ and
‘output edge’ the edges represent the change of method between 2 nodes. Algorithm 1 explains the
conversion of sensor-based Arduino real-time system functional block diagram to the Event Sequence
Graph. Figure 4 shows the functional block diagram basic Arduino based tricolour LED. The wireless
sensor-based signals are transferred to the tricolour LED based on the input red, green, or blue colour to
be displayed in the common cathode RGB LED. The directional is described as the input. Algorithm 1
describes the Event Sequence Graph conversion steps from the Arduino real-time systems.

Figure 5 Arduino with tricolour LED functional block diagram.

The input value graph node has divided in D1 to Dn based on the direction, if the events are
available in the block diagram then return the directed graph with an event or if the node is empty that is
initial stage null then provide the empty graph with unique node. D1 allocation is enabled based on the
direction either bidirectional or unidirectional. Finally, identity the sub node and proved the binary tree
structure with left and right node.

Algorithm 1: Event Sequence Graph conversion

Pre Graph node D1 contains direction of the event
Post Directed graph EG or error returned
Return Graph with node or null if no memory
if (memory not available) //initial stage (or) underflow
Graph == null
else
 Allocate (event) = 0
 Graph node D1  count = event ++
 Graph node D1 connection lines = -1
 Graph node D1 Bidirectional or Unidirectional
end if

if (event not line) //During allocation of the new stack.
 recycle (event)
 Graph node D1 = process
elseif (Graph node D1 depends on process)
 allocate (Graph node D1stimulus process)

Trends Sci. 2022; 19(8): 3472 6 of 10

else
 Graph node D1++
reallocate (Graph node D1stimulus)
return Graph node D1 - Dn // Stack underflow

Sub node [n] = Graph node D1(N); //Identify the sub node
 If (D1(LN1) < D1(RN1)
 Graph node D1 [n-1] = EG(LN1)
 else
 Graph node D1 [n-1] = EG(RN1)
End if;

End create Event Sequence Graph.

Figure 5 shows the generated Event Sequence Graph for tricolour LED based on the proposed

algorithm. The top root node V1 is the sensor signal if no signal then off mode (right node) in the LED, In
the V3, V4, V5 are the output signal based on the event. The directional from V2 to V3, V4, V5 are the
bidirectional activity. Finally based on the graph event linking table formalized in Table 2.

Figure 6 Event Sequence Graph for tricolour LED.

In the event linking table, the events are collected along with the information regarding the event
direction either unidirectional or bidirectional, and input node or output node based on the algorithm-
based event flow graph.

Table 2 event linking table.

Event ID Event Event direction Node Value
T1 Signal to GND bidirectional (E2) input value (V1)

T2 Sensor Signal RED bidirectional (E2) output value (V2)

T3 Sensor Signal GREEN bidirectional (E2) output value (V2)

T4 Sensor Signal BLUE bidirectional (E2) output value (V2)

T5 Sensor Signal Off unidirectional (E1) output value (V2)

T6 Waiting sate bidirectional (E2) input value (V1)

Trends Sci. 2022; 19(8): 3472 7 of 10

The event attributes represent in data structure binary tree. In the binary tree, all the left nodes are
input value (V1), the right nodes are output value (V2). If any bidirectional (E2) is minimized in the
binary tree format as the unidirectional (E1), Finally V1, V2 of each event are ordered based on the pre-
order travel the data collected and generated the event linking table.

The proposed event binary tree for tricolour LED, each tree pre-order value will produce the
precondition, input value, output value, and post condition [7,11]. Table 3 describes the generated test
cases for the sensor-based tricolour LED.

Table 3 Test case generation.

Binary
tree ID

Event
Scenario

Test Case
ID Precondition Input Output Post

condition

T1 Sensor
Signal Off

Test
Case1

Waiting sate
(GDN)

Off command/
Equipment

damage

LED off Waiting
sate (GDN)

T2 Sensor
Signal RED

Test
Case2

Waiting sate
(GDN)

RED display LED RED Display
mode

T3 Sensor

Signal
GREEN

Test
Case3

Active mode/
Waiting sate

(GDN)

GREEN
display

LED
GREEN

Display
mode

T4 Sensor
Signal
BLUE

Test
Case4

Active mode/
Waiting sate

(GDN)

GREEN
display

LED
GREEN

Display
mode

T5 Waiting
sate

Test
Case5

Display mode Waiting sate
(GDN)

Waiting
sate (GDN)

Check
Condition

The test cases are unique ID based on the binary tree, the left node and right nodes are the input and
output for the root node. Precondition has provided the current state of the Arduino real-time systems.
The post condition is the input from the Arduino real-time systems either through manual or automatic.
Each binary tree produces the precondition, input data, and output value and post condition.
Simultaneously, the methodology validates the event flow with Actual output, so that, the quality of test
cases gets improved. The event linking table based test cases are identified the coverage criteria of the
generated test cases. To illustrate the methodology, 4 different sensors based Arduino real-time systems
are compared with the generated test cases in the experiments section.

T1

T2

T3

T4

T5

Trends Sci. 2022; 19(8): 3472 8 of 10

Table 4 Test case validation.

Binary
tree ID Event Scenario Test Case ID

Code
based
output

ELT based
output

Actual
output

Expected
output

T1 Sensor Signal
Off

Test Case1 LED off LED off LED off LED off

T2 Sensor Signal
RED

Test Case2 LED RED LED RED LED RED LED
RED

T3 Sensor Signal
GREEN

Test Case3 LED
GREEN

LED
GREEN

LED
GREEN

LED
GREEN

T4 Sensor Signal
BLUE

Test Case4 LED
GREEN

LED
GREEN

LED
GREEN

LED
GREEN

T5 Waiting sate Test Case5 Not
Applicable

Waiting sate
(GDN)

Waiting
sate

(GDN)

Waiting
sate

(GDN)

Software testing for sensor-based Arduino real-time systems has been challenging due to the
functionality of the current human-less requirements. The functional block diagram has been widely used
as a system-level specification in Arduino real-time systems. The interaction diagram describes the
system behaviour in the real-time process. However, due to a lack of efficient techniques for identifying
simulated signals in Arduino real-time systems, the test case generation suffers from one of the major
problems in software testing. An effective test case is necessary to produce reliable testing. Our proposed
technique, describe the validation of test cases based on the event linking table and code-based. Table 4
has described the process of validating the test case results with multiple constraints. The detailed
experiment results with comparative results have recorded in section 4.

Results and discussion

This chapter summarizes the contribution of the present methodology in proposing a new technique
for a more convenient and practical method of software test case validation through functional block
diagrams of Arduino. The proposed approach validated the test cases generated by using an event linking
table. The results obtained through experiments show that the proposed approach is feasible and capable
of reducing the cost in SDLC. In path testing, the tester is expected to execute all paths of the test
program. This testing style is very laborious and time-consuming. Program with loops have more number
of paths and it becomes difficult to exercise all paths for testing purposes. To overcome this problem, a
subset of events based on some criteria must be selected. The proposed block diagram approach provides
all edge coverage criteria. Figure 6 shows the source code coverage criteria based on several new test
cases using functional block diagrams.

Figure 7 Generated test cases based on proposed approach.

90

45

345

112

56

86

0 50 100 150 200 250 300 350 400

Arduino UNO Fingerprint Door Lock

Arduino Robot Car

Arduino Home Automation

Arduino Ping Pong Game

Arduino RFID Door Lock

Arduino Plant Watering System

TEST CASES

AR
DU

IN
O

 R
TS

 S
YS

TE
M

S

Trends Sci. 2022; 19(8): 3472 9 of 10

To verify the performance of the proposed approach in this paper, 6 different prototypes Arduino
real-time system experiments were conducted. During the testing, each event scenario produces the test
cases. The coverage criteria to be calculated based on the path and branch coverage. The proposed test
case generation for Arduino programming instructions using functional block diagrams yielded the
effective results the comparative analysis of the proposed approach and the user acceptance testing has to
be matched in Figure 7. In feature research investigating the possibility of automatic test case generation
on the basis of other specifications in the functional block diagrams.

Figure 8 Comparative results of proposed approach.

It is observed that the proposed approach with validation technique, presented in these results, can
generate test cases with high all-code coverage and can generate test data for given unique test cases. The
validation approach shows the possible coverage in the block diagram based approach. Limitations of the
technique observed during the experimental research and suggestions for future work are given in
conclusions.

Conclusions

Software test case generation in regression testing is the process of checking the fault in the
modified version. In the whole life time of the software, each version of composite functions must be
tested to ensure the quality. Software test case generation is an important part of the software testing life
cycle. It checks the functionality of the software concerning user requirements. This paper has deliberated
Event Sequence Graph conversation algorithm, event linking table generation, and validation of test cases
based on the functional block diagrams. Test cases are generated by exercising each part of the program
with a suitable functional block in the Arduino real-time systems. The new faults have been detected with
all path coverage in the proposed approach that has not been detected in the code based approach. In the
future, the test case validation of the proposed work could be tried with other specification diagrams to
fully automate the test case validation process.

References

[1] J Chen, L Zhu, TY Chen, D Towey, FC Kuo, R Huang and Y Guo. Test case prioritization for
object-oriented software: An adaptive random sequence approach based on clustering. J. Syst.
Softw. 2018; 135, 107-25.

[2] H Wang, J Xing, Q Yang, P Wang, X Zhang and D Han. Optimal control based regression test
selection for service-oriented workflow applications. J. Syst. Softw. 2017; 124, 274-88.

[3] R Mukherjee and KS Patnaik. A survey on different approaches for software test case prioritization.
J. King Saud Univ. Comput. Inf. Sci. 2021; 33, 1041-54.

[4] AP Agrawal and A Kaur. A comprehensive comparison of ant colony and hybrid particle swarm
optimization algorithms through test case selection. In: SC Satapathy, V Bhateja, KS Raju and B

Trends Sci. 2022; 19(8): 3472 10 of 10

Janakiramaiah (Eds.). Data engineering and intelligent computing. Springer Singapore, Singapore,
2018, p. 397-405.

[5] S Eghbali and L Tahvildari. Test case prioritization using lexicographical ordering. IIEEE Trans.
Softw. Eng. 2016; 42, 1178-95.

[6] R Feldt, S Poulding, D Clark and S Yoo. Test set diameter: Quantifying the diversity of sets of test
cases. In: Proceedings of the IEEE International Conference on Software Testing, Verification and
Validation, Chicago, Illinois. 2016, p. 223-33.

[7] A Marchetto, MM Islam, W Asghar, A Susi and G Scanniello. A multi-objective technique to
prioritize test cases. IIEEE Trans. Softw. Eng. 2016; 42, 918-40.

[10] C Hettiarachchi, H Do and B Choi. Risk-based test case prioritization using a fuzzy expert system.
Inf. Softw. Technol. 2016; 69, 1-15.

[11] P Zhang, J Yu and S Ji. ADF-GA: Data flow criterion based test case generation for ethereal smart
contracts. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, Seoul, Republic of Korea. 2020, p. 754-61.

[12] M Padmanabhan. Test path identification for virtual assistants based on a chatbot flow
specifications. In: KN Das, JC Bansal, K Deep, AK Nagar, P Pathipooranam and RC Naidu (Eds.).
Soft computing for problem solving. Springer, Singapore, 2020, p. 913-25.

[13] M Azizi and H Do. Graphite: A greedy graph-based technique for regression test case prioritization.
In: Proceedings of the IEEE International Symposium on Software Reliability Engineering
Workshops, Memphis, Tennessee. 2018, p. 245-51.

[14] P Mani and M Prasanna. Test case generation for embedded system software using UML interaction
diagram. J. Eng. Sci. Technol. 2017; 12, 860-74.

[15] GH Subramanian, PC Pendharkar and DR Pai. An examination of determinants of software testing
and project management effort. J. Comput. Inf. Syst. 2017; 57, 123-9.

[16] P Mani and M Prasanna. Test case generation for real-time system software using specification
diagram. Int. J. Intell. Eng. Syst. 2017; 10, 166-75.

[17] P Mani. Test path identification for internet of things using transaction based specification. In:
Proceedings of the International Conference on Current Trends towards Converging Technologies,
Coimbatore, India. 2018, p. 1-6.

[18] H Wang, J Xing, Q Yang, W Song and X Zhang. Generating effective test cases based on
satisfiability modulo theory solvers for service-oriented workflow applications: Effective test cases
for service-oriented workflow applications. Softw. Test. Verif. Rel. 2016; 26, 149-69.

[19] A Cavarra, C Crichton and J Davies. A method for the automatic generation of test suites from
object models. Inf. Softw. Technol. 2004; 46, 309-14.

[20] SK Ramler, DP Mohapatra and R Mall. Test case generation based on state and activity models. J.
Object Technol. 2010; 9, 1-27.

[21] P Samuel, R Mall and P Kanth. Automatic test case generation from UML communication
diagrams. Inf. Softw. Technol. 2007; 49, 158-71.

[22] C Wang, F Pastore, A Goknil, L Briand and Z Iqbal. Automatic generation of system test cases from
use case specifications. In: Proceedings of the International Symposium on Software Testing and
Analysis, Baltimore, Maryland. 2015, p. 385-96.

[23] P Mani and M Prasanna. Validation of automated test cases with specification path. J. Stat. Manag.
Syst. 2017; 20, 535-42.

[24] A Memon, Z Gao, B Nguyen, S Dhanda, E Nickell, R Siemborski and J Micco. Taming Google-
scale continuous testing. In: Proceedings of the IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track, Buenos Aires, Argentina. 2017, p.
233-42.

[25] H Srikanth, M Cashman and MB Cohen. Test case prioritization of build acceptance tests for an
enterprise cloud application: An industrial case study. J. Syst. Softw. 2016; 119, 122-35.

	Abstract

