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Abstract 

Electric vehicle technology is an essential research field for improving full-electric vehicle (FEVs) 
capabilities. Different subsystem parameters in the FEVs should be monitored on a regular basis. The 
better these subsystems are used, the better the FEVs' performance, life, and range become. Nowadays, 
estimation of the state of charge (SoC) of the batteries and the driving distance is the area not been 
standardized sufficiently. In this study, a novel fuzzy classification method (FCM) is proposed to make 
the exact driving distance estimation of FEVs. The proposed FCM considers the consumed power and 
parameters of the battery under dynamic conditions. A test location was selected for the proposed FCM 
and tested under 3 different test conditions, namely, no-load, half-load and full-load conditions. Also, the 
performance of FCM is studied under several slope conditions, and the result shows that if the battery 
voltage decreases then the power consumed by the vehicle is improved in the uphill travel and the battery 
voltage is normal and the power consumption of the vehicle is decreased in the downhill drive. Finally, 
the drive distance of the proposed FCM is determined.   

Keywords: Driving distance, Full electric vehicle, Fuzzy classification method, Power consumption, 
Travel distance estimation 
 
 
Introduction 

A new energy generation method is demanded due to the usage of fossil fuels in the transportation 
sector. The transportation sector consumed 93 million barrels of oil every day worldwide. From the total 
greenhouse gas emission, the transportation sector produces 27 % [1]. The electric vehicle (EV) is an 
alternate solution for reducing harmful emissions. Both the fuel crisis and environmental pollution are 2 
undividable problems. The utilization of electric vehicles saves the environment and solve the fuel crisis 
[2,3]. Nowadays, electric vehicle technology is an important research area, accepted by many countries 
for reduction of emission and energy saving. It also leads to the production of new vehicles [4].  

EVs are a combination of electrical and mechanical systems that have different subsystems for 
proper operation. The subsystem includes a battery control unit, motor control unit, sensing, and 
monitoring unit, and communication unit for efficiently handling different functionalities [5,6]. EVs are 
classified as follows: 1) Plug-in Hybrid Electric Vehicles (PHEVs) and 2) Battery Electric Vehicles 
(BEVs). BEVs can be categorized based on various energy sources utilized [7]. PHEVs used electric 
motors and internal combustion engines whereas BEVs used only electric motors for the entire drive 
system. Various power sources such as fuel cells, batteries, supercapacitors, and solar panels are used as 
hybrid or separate [8]. An automatic recharging mechanism based on renewable energy has been 
proposed by Chellaswamy. Both solar and wind energy remain used for charging the battery packs of the 
electric vehicle [9]. The battery packs connected in the BEV give the required energy for the drive 
system. The battery packs of EVs are charging through park stations, the standard home outlets, and 
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roadside units, etc. Recharging the storage system present in EVs requires a couple of hours, and the 
capacity of the battery pack defines the charging time [10,11].  

The energy stored in the battery pack defines the distance travelled by the vehicle. The drive 
distance is estimated using various ways, namely, some deterministic methods, the standards created by 
the Environmental Protection Agency (EPA), and the measured data of previous trips. However, these 
methods do not consider dynamically changing environmental conditions which are affecting the vehicle. 
As a result, the accuracy of those methods is very less [12]. There are 2 different approaches are followed 
to estimate the driving distance of EVs. The 1st is a model-based approach and the 2nd one is the historical 
knowledge-based approach. The knowledge-based approach does not include a model instead it uses 
previous battery consumption data and driving information of the vehicle. As a result, the accuracy of the 
knowledge-based approach is less [13]. Daina et al. [14] suggested a model-based drive distance 
estimation method that includes the mathematical model of all the subsystems of the vehicle. This is the 
reason for the accuracy of the model-based approach is higher than the prediction method. The model-
based approach requires a high-precision mathematical model for providing an accurate result [15]. On 
the other hand, the combination of both the model-based approach and the knowledge-based approach is 
used in a hybrid vehicle. The model used a multivariate regression model for evaluating the measured 
data [16]. A novel method is introduced to estimate the drive distance of the electric vehicle using 
different parameters such as temperature, battery capacity, battery discharge voltage, available energy in 
the storage system, and the energy consumption of the vehicle. The linear regression method includes 
driver behavior in real road driving and the parameters of the vehicle are considered dynamically for the 
analysis. Even though this method provides a better result, the sensitivity is easily affected by variation in 
the driving conditions [17,18].    

The usage of EVs is affected by various factors such as longer battery charging time and limited 
battery capacity. So that the EV consumers and manufacturers meeting certain concerns. Hence it is 
important to know the existing charge of the battery and the corresponding coverage distance [19]. For 
estimating the drive distance of the EV, the SoC information is required. Tannahill et al. [20] proposed a 
low-cost microcontroller-based SoC estimation method for calculating the drive distance of the vehicle. 
The variation of SoC is taken into account and the corresponding distance is estimated and informs the  
driver. Boyraz and Dogan [21] developed a hybrid system using fuzzy logic and an artificial neural 
network (ANN) for vehicle classification during traffic. The fuzzy logic control is used to identify the 
number of vehicles through the vehicle acoustic signal in the traffic junction and fix the lighting time of 
different signals. Dawei et al. [22] proposed a neuro-fuzzy classifier and classical neural network-based 
sensory network for real-time emotion recognition. A webcam is used to send the video stream of a user’s 
face identifying the emotion. For monitor and controlling different subsystems of EVs, inter-vehicle 
communication is essential. It can be achieved through the communication protocol called the Controller 
Area Network (CAN) [23]. Different parameters of the vehicle subsystem can be collected and passed the 
control information to the target during the operation. The other communication protocols such as Local 
Interconnect Network (LIN) and Media Oriented Systems Transport (MOST) are widely used for inter-
communication in vehicles [24,25]. Power Line Communication Protocol (PLCP) was developed by 
Bassi et al. [26] for inter-vehicle communication over electric lines used in the vehicle. PLCP is widely 
used in vehicle subsystem communication and building automation systems. 

In the above literature, a fuzzy logic-based classification method (FCM) was used in a limited 
number of studies on EVs. In this study, FCM is used to estimate the drive distance of EVs. The 
command should be transmitted and the required information should be collected without any problem. 
For monitoring and controlling different subsystems of EVs, a CAN inter-vehicle communication 
protocol is used. The EV’s drive system directly affects due to the following parameters: 1) external loads 
acting on the vehicle, 2) traffic condition, 3) environmental factors, and 4) road type. Changes in these 
parameters and the status of the batteries directly affect the instantaneous power consumption of the 
vehicle. In this study, the driving force is estimated using 4 different parameters such as the weight force 
of the vehicle, the force due to vehicle inertia, wind resistance, and force of gravity of the vehicle. The 
instantaneous power consumption can be evaluated through the dynamic change of parameters and the 
status of the battery charge. For simplifying the drive distance estimation, the fuzzy classifier is proposed. 
The rest of the paper is structured as follows: Section 2 explains the material and methods used. Section 3 
describes the Designing of the fuzzy classifier. Experimental results and discussion are given in Section 4 
and the conclusion is given in Section 5.    

 
 

Material and methods 
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In practice, various physical forces affect the drive system of EVs. Various forces affecting the 
drive system are illustrated in Figure 1. The drive system should have the capability to handle these 
forces, namely, the force due to the wind (F3), gravitational force (F1), the force due to inertia (F2), and 
rolling resistance force (F4). The movement of the vehicle will be affected by these dynamic parameters. 
The knowledge of the physical resistance of each subsystem present in the EVs affects the drive system is 
important for guaranteeing the movement of the vehicle. The drive system must exceed the forces due to 

the physical resistances for performing the movement. The driving force �𝑓𝐷� of a vehicle can be 
expressed as: 

 
𝑓𝐷 = 𝑔𝑉𝑚𝑎𝑠𝑠𝑐𝑜𝑠 (𝑎)𝐶𝑅𝑅 + 𝑉𝑚𝑎𝑠𝑠𝐴𝑣 + 0.5𝜌𝐴𝑆𝑎(𝑆𝑣 + 𝑊𝑠)2 + 𝑔𝑉𝑚𝑎𝑠𝑠𝑠𝑖𝑛 (𝑎)                         (1) 
 
 

 

 
Figure 1 Vehicle affected by different forces. 
 
 

In Eq. (1), the 1st term denotes F4 (Figure 1), where CRR is the coefficient of rolling resistance 
(𝐶𝑅𝑅 = 3.61𝑆𝑣), 𝐴𝑣is the vehicle acceleration (m/s2), is the road slope (degrees), Vmass is the weight of the 
vehicle (kg), g is the gravitational acceleration (m/s2). The 2nd term (F2 in Figure 1) indicates the force 
due to vehicle inertia (N), where 𝑆𝑣 is the speed of the vehicle in km/h. The 3rd term (F3 in Figure 1) 
indicates the force due to wind resistance, where ρ is the density of air (kg/m3), A is the aerodynamic 
coefficient, 𝑆𝑎is the surface area of the vehicle (m2), Ws is the speed of wind (m/s), and the last term (F1 
in Figure 1) indicates the force of gravity of the vehicle (N). In addition, F5 of Figure 1 denotes the 1st 
term of Eq. (1) except CRR. Some of the vehicle parameters are changed dynamically and some of them 
are fixed [27]. The torque generated in a mechanical system can be expressed as: 

 
𝑀𝑇 = 𝐹𝑣𝑊𝑟                                                                    (2) 
 
where MT, Fv, and Wr are the generated torque (Nm), the Driving force of the vehicle, and the radius of 
the wheel (m) respectively. The driving force of the vehicle can be expressed as based on [27] as: 
 
𝐷𝑃 = 𝐹𝑣𝑆𝑣                                                           (3) 
 
where Dp represents the drive power (W), Sv is the speed of the vehicle (km/h). The wheel torque can be 
expressed as: 
 
𝑀𝑤 = 𝑀𝑇

2
                                                             (4) 

 
where Mw is the wheel torque (Nm) and the angular speed (𝜔𝑤) of the wheel can be expressed as: 
𝜔𝑤 = 𝑆𝑣

𝑀𝑤
                                                            (5) 
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By using the above equations, the required power for the vehicle movement can be calculated and the 
driving system is designed. 
 

Proposed approach 
In this study, for estimating the drive distance an EV is required. The basic mechanical, electrical 

and electronic system required for the EV is manufactured. The FCM was applied in the EV and the test 
was carried out under different conditions. The technical specification of EV is listed in Table 1. The 
vehicle is designed with 4 wheels with a total weight of 780 kg including other accessories. The batteries 
are connected to the test vehicle are shown in Figure 2. The motor drive system was purchased and 
calibrated.   
 

 

 
Figure 2 Battery packs are connected in the front portion of the test vehicle. 

 
 

 
Figure 3 Battery measurement and monitoring system used in the EV. 
 
 

Communication between the master controller to other subsystems present in the EV is done 
through the CAN protocol. The voltage sensor (LV25P) is used to measure the voltage values of batteries 
continuously. The battery temperature is measured using a resistance temperature detector (RTD) [17]. 
For measuring and monitoring the dynamic parameters of the batteries an electronic circuit has been 
developed. The battery measurement and monitoring system are shown in Figure 3. The current sensor 
LA125P was used to measure the total instantaneous current consumed by the system.  
 
 
Table 1 Technical specifications of the EV under test. 
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Parameters Values Unit 
Number of wheels 
Width 
Length 
Height 
Brake system 
Tyre diameter 
Tyre width 
Distance between wheels 
Motor controller 
Motor type 
Weight of motor 
Motor power 
Efficiency of motor 

4 
1.2 

2.75 
1.8 

Double rope rear braking system 
395 
170 
0.95 

Sepex controller (KDZ72400) 
48 V, 100 A Zibo DC motor 

29 
4.8 
79 

- 
m 
m 
m 

Rear 
mm 
mm 
m 
 
 

kg 
kW 
% 

Battery 
Type 
Maximum Voltage 
Battery power 
Charging cut-off voltage 
Discharge cut-off voltage 

Gel battery 
12 

5200 
13.5 
11.5 

12V×4 
Volt 
Wh 
Volt 
Volt 

 
 

 
Figure 4 Nextion touch screen displays the vehicle information. 

 
 

The controller (Atmega328) is used to perform control operations based on the signals received 
from different sensors. A touch screen display system is developed for showing various parameters; the 
user can control various parameters of the EV by using this. The Nextion touch screen has an ARM 
controller that controls the display. Both the controllers are communicated with a baud rate of 9600. 
Various parameters of the vehicle that have been designed for EV are shown in Figure 4. The touch 
screen displays various parameters such as the speed of the vehicle, drive distance, total power, power 
consumption, and SoC. A proximity sensor is used to measure the speed of the vehicle which is mounted 
near the wheel. The wheel speed of the EV is measured through the sensorless anti-lock braking system 
(ABS). The back EMF of the In-Wheel motor is used to estimate the moving speed of the vehicle. 
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Furthermore, the accuracy of the speed estimation is compared with an optical encoder output. The main 
advantages of sensorless measurement include a reduced number of connections, decreased maintenance, 
easier miniaturization of the system, and lower system cost. 
 
 

 
Figure 5 Snapshot of the master program control (MPC) using Arduino UNO. 
 
 

Design of touch screen  
Nextion display is a Graphical User Interface (GUI) mainly used in monitoring and control 

applications. The Nextion is a resistive touchscreen that has a built-in ARM microcontroller for 
controlling the display. It is used to create buttons, store images, and text-based on the requirement. Serial 
communication with baud at a rate of 9600 is used to communicate with other devices such as Arduino, 
Raspberry Pi, ESP8266, ESP32 and so on. The Nextion Editor is used to design the GUI in which one can 
add buttons, progress bars, gauges, and text labels for the user interface in an easier way.  

In this study, we added a black background image with dimensions equal to the Nextion display. 
Various elements present in the toolbox of the Nextion Editor and the designed GUI for the drive distance 
estimation is shown in Figure 4. The size and position of the elements were defined in the attribute area. 
All the elements have their object name and unique identification number. The touchable component 
should be triggered for the specific event. The compilation was carried out and downloaded the TFT file 
to the corresponding work to the Nextion display.  

 
Master program control (MPC) 
The MPC has 4 main modules, namely, Li-ion battery charge control and SoC module, speed 

control module, power converter module, and range estimation. In addition, it also manages slave 
controllers. The snapshot of the MPC is shown in Figure 5. The MPC determines the cell operating 
conditions and maintains the SOC accordingly. Standard SOC range for Li-ion battery varies between 
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3.75 - 3.89 V. If a mismatch is found in any cell, the MPC switch on the bidirectional DC-DC converter 
to charge the corresponding cell. The converter has both the forward and reverse converter for charging 
and discharging the battery. A dynamic braking system is used and a drive control is used in the EVs for 
controlling the speed. The MPC controls the electronic circuit that regulates the speed of an electric 
motor. The MPC also controls the main DC-DC converter for providing a lower DC voltage (48 V or 12 
V) required for fans, window motors, wiper, interior lights, headlights, and other systems. Also, the MPC 
estimates drive distance based on the available energy of the battery packs. The drive distance estimation 
is clearly explained in section 3. 
 

Design of fuzzy classifier 
For estimating the drive distance of EVs, FCM was used. The model-based method is included to 

predict the drive distance. The fuzzy classification method was chosen because it has different advantages 
such as it can be easily developed, it produces fast results, and higher accuracy [28]. The model of a fuzzy 
classification method for drive distance estimation is shown in Figure 6. Figure 6 indicates that the SoC 
of the battery, instantaneous power, distance measurement (FD), and speed measurement are the input to 
the model. During fuzzification, the set of input is decomposed into one or more fuzzy sets. The classifier 
output is created based on the associated rules by the inference engine. The output of the inference engine 
transforms the range estimation into real-world user understandable data.   
 
 

 
Figure 6 Model of FCM for drive distance estimation. 

 
 

The membership function is used to represent the instantaneous power and SoC parameters. The 
parameters are measured momentarily, and the membership function values are represented between 0 - 
1. The classifier output is produced by the inference engine of FCM, processing the rules related to the 
drive distance estimation from the set of rules framed. The output of the inference engine of FCM is 
transformed into real-world space for user understanding. The theoretical calculation was done before the 
experiment by considering the route and the vehicle parameter is listed in Table 2. The torque estimated 
drive distance and consumed power were estimated including the road and slope parameters. Here the 
coefficient of friction force (0.035), vehicle speed (20 km/h), and wind speed (5 km/h) are considered for 
calculation.    
 The calculation was performed before the experiment for different road slopes at a maximum of 8 
degrees. The values are applied to Eqs. (1) - (5) and determine the parameters. After the theoretical 
calculations were completed the experiment was conducted in the EV. A comparison is performed with 
the theoretical and experimental results. It is seen that the upper limits of the estimated values should be 
close to the membership function of the classifier.  
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Table 2 Estimated results of torque, drive distance, and consumed power before the experiment. 

Loading Slope of road Power consumed 
(W) 

Torque 
(Nm) 

Distance 
(km) 

No-load 

0 
2 
4 
6 
8 

328.84 
352.40 
381.72 
407.39 
435.81 

56.32 
61.53 
67.98 
71.25 
76.91 

45.82 
42.05 
39.42 
36.93 
34.71 

Medium-load 

0 
2 
4 
6 
8 

354.73 
389.87 
415.90 
452.74 
478.39 

61.52 
68.03 
73.82 
78.49 
83.18 

42.83 
39.74 
36.18 
33.79 
30.83 

Full-load 

0 
2 
4 
6 
8 

407.39 
447.37 
482.74 
519.31 
556.84 

72.81 
79.67 
85.63 
92.06 
99.18 

36.70 
34.72 
32.81 
30.68 
27.48 

 
 

 
Figure 7 Output membership functions of the classifier. 
 
 

 
Figure 8 Membership functions of the battery charging status.  
 
 

The output membership function of the classifier is shown in Figure 7. The values are selected 
between –1 and 1 for estimating the drive distance [29]. The drive distance was estimated for EV by 
evaluating the variables under running conditions. The power consumption and SoC of the battery are 
taken as input variables of the FCM, which has 7 membership functions.  

The membership functions (input and output) of FCM are linguistically labelled as very very low 
(VVL), very low (VL), low (L), little low (LL), normal (N), little high (LH), high (H), very high (VH), 
and very very high (VVH) [30]. The membership functions of the charging status of the battery are shown 
in Figure 8. SoC is articulated as 0 - 100 %.   
 

 



Trends Sci. 2021; 18(22): 32   9 of 15 
  

 
Figure 9 Membership functions of instantaneous power. 
 
 
Table 3 Rule base for the proposed FCM. 

SoC 
VL L LL N LH H VH Watt 

VL 
L 

LL 
N 

LH 
H 

VH 

N 
N 
N 
N 
N 
N 
N 

L 
LL 
LL 
N 
N 

VH 
VH 

L 
L 

LL 
LL 
N 
H 

VH 

VL 
L 
L 

LL 
LL 
LH 
H 

VL 
L 
L 
L 

LL 
N 

LH 

VL 
VL 
VL 
L 

LH 
LL 
LH 

VL 
VL 
VL 
VL 
L 
L 
N 

 
 

 
Figure 10 Selected test route of the study. 
 

 
The membership functions of the instantaneous power (2nd input) of FCM is shown in Figure 9. 

Both the trapezoidal and triangular membership functions are used in Figures 7 and 8, respectively. The 
rule base is created according to the input variables of the membership functions of the FCM for drive 
distance estimation. The rule base for the proposed FCM is listed in Table 3. The theoretical calculations 
and expert opinion have been considered for constructing the rule base of the proposed FCM.    
 

Results and discussion 

Experimental results  
The theoretical calculations such as torque, power, and distance were made before the experiment. 

A test route was selected in Chennai city and the test was carried out for 3 different scenarios such as no-
load, half loaded, and fully loaded. Eight test points (A-H) have been fixed in the test area is shown in 
Figure 10. Distance between the test point A to H is 2.1 km with a different slope was used in the 
experiment. Before starting the drive distance estimation, the communication protocol was verified. The 
drive distance is estimated for all the test conditions and the dynamic parameter of the vehicle is updated 
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simultaneously. The batteries of the vehicle are fully charged and the test was carried out. The measured 
output is displayed using the Nextion NX3224T024 HMI TFT LCD. The driver is taken into account at 
no-load condition.  

 
 

 
Figure 11 CAN protocol verification using Picoscope. 
 
 

CAN communication test 
The CAN communication was tested before the drive distance estimation. It is necessary to know 

the communication between different subsystems of EV through the CAN bus. It is known that the 
voltage between the CAN-low line to the CAN-high line should be 2.5 V and the equivalent resistance 
between the communication line should be 60 Ω [31,32]. The EV was powered and the subsystem of EV 
connected using CAN protocol was observed through the Picoscope 4000 series is shown in Figure 11. 
This software is used for real-time signal acquisition supported on Microsoft Windows, Mac OS X, 
Ubuntu, and Debian platforms. The main purpose of Picoscope is to analyze and view real-time signals 
from data loggers and oscilloscopes. 

Various parameters of EV are sent via CAN network will be identified using message IDs. For 
example, the motor current, SoC information, and battery voltage were used with the ID numbers 0×1, 
0×5 and 0×2, respectively. The CAN test device is connected to the vehicle and the subsystem connection 
is shown in Figure 11. After the connection was established, the CAN protocol was analyzed using the 
Picoscope software 4000 series. The ID number, the data, length of the data, and CRC (cyclic redundancy 
check) bit of each data stream were analyzed. The measured signal for the initial communication between 
all the subsystems was carried out and the communication between the CAN protocol and the motor 
controller is shown in Figure 12. 

In Figure 12, A is the start of the message signal, B is the message ID, C is the data length code 
(DLC) signal, D is the CRC calculated field, E is the CRC field decoded, and F is the processing time. 
From Figure 12 it is observed that the potential difference between CAN terminals high and low in the 
physical layer is 0 volt. At the start of the message, the potential difference between CAN high and low 
terminals is 5 volts. When the message identification code is identified by the hardware, the potential 
difference between CAN-low to CAN-high is probably 0. The DLC indicates the length information of 
the message, in a standard, CAN message 4-bit length is used for the message. In Figure 12, the portion 
D and E shows the cyclic redundancy check (CRC), which indicates the accuracy of the sending message 
and received by the hardware. The length of the field is limited to 16-bits. The CRC code is sent along 
with the message. The message is decoded by the receiver and matches the CRC processed by the 
receiver. If any mismatch is identified, the data is invalid. The last portion in Figure 12 is F. It indicates 
the end of the delimiter. The measured output shows that communication is successful between the CAN 
to the master controller.      
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Drive distance estimation 
Various parameters used to estimate the drive distance of EV is listed in Table 4. Distance between 

different test points and the corresponding slope is given in Table 4. It is understood that the EV climbed 
initially and maintain up to 5 and downhill between 5 to finish point. To make the analysis easier, the 
total driving distance is divided into different sections. The EV starts from point 1, passes through 2, 3, 4, 
5, 6, 7 and ends with point 8. 
 
 

 
Figure 12 Analysis of CAN protocol for the proposed distance estimation. 

 
 

Table 4 Distance and slope used to estimate drive distance of EV. 

 1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 
Distance (m) 
Average slope 
(%) 

402.30 
2.48 

309.45 
2.62 

294.29 
1.94 

217.23 
–2.94 

390.36 
–1.73 

280.96 
–2.184 

205.45 
–2.74 

 
 

 

Figure 13 Power consumption of EV under different pedal position. 
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Table 5 Various parameters of EV under different loading condition. 

Loading 

Vehicle Parameters Motor Parameters Battery Parameters 

Load 
(kg) 

Time 
(s) 

Average 
speed 
(km/h) 

Max. 
current 

(A) 

Max. 
Torque 
(Nm) 

Power 
consumed 

(Wh) 

Average 
current 

(A) 

Average 
voltage 

(V) 

Charge 
status 
(%) 

No-load 
Half-load 
Full-load 

74 
159 
312 

1980 
2700 
3120 

20.2 
16.5 
14.5 

100 
96 

110 

130 
124 
150 

520.38 
621.47 
846.82 

37.85 
48.37 
62.76 

49.93 
49.18 
48.21 

79.8 % 
76.4 % 
65.7 % 

 
 

Driving style also affects the power consumption of the vehicle thereby distance coverage. In this 
study, the power consumption of the EV under 3 different pedal positions (PP) such as 50, 75 and 100 % 
have been considered. Different PP and the corresponding power consumption and speed are shown in 
Figure 13. Figure 13 indicates that higher speed is achieved for 100 % PP compared to lower PP. The 
maximum speed of the EV reduces for lower PP consequently lower acceleration. The output received by 
the Nextion TFT display is shown in Figure 14. The driver can understand the coverage distance of the 
vehicle for the charge available in the battery packs.  

 
          

 
Figure 14 Measured output displayed in Nextion TFT display.  
 

 
The slopes of the road directly affect the power consumption of the EV. Initially, the test was 

carried out with no-load condition (only with driver) for the test route, 2.1 km with 74 kg of load. The 
information received from the subsystem of EV and the responses of the FCM was noted. The no-load 
test was completed in the 1980s. During the experiment, the average voltage and current of the battery are 
49.93 V and 37.85 A, respectively. The power consumed by the EV was 520.38 Wh. The drive distance 
of the EV estimated by the proposed FCM from the test point A to G is shown in Figure 15.  

The 3 different loading conditions of the EV were conducted at different times and the results of the 
3 experiments are illustrated in Figure 15.  The slope climbs up to point C to D with a slope of 2.94 and 
downhill starts from point E to the end of the driving route. The end section has a downhill slope of –2.74 
(Table 3). Figure 15 it is observed that the drive distance slowly decreases at the start of C and it 
increases from D based on the output of FCM. Similarly, the drive distance of the EV estimated by the 
proposed FCM from the test point G to A is shown in Figure 16. It is observed that the power 
consumption is less downhill compared to uphill drive.   
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Figure 15 Output of FCM under 3 different loading conditions of EV from A to G. 

 
 

 
Figure 16 Output of FCM under 3 different loading conditions of EV from G to A. 

 
 

Comparison results 
The important feature of this study is to estimate the drive distance of EV is carried out using FCM. 

This approach avoids complex mathematical calculation and produces fast solutions. From the above 
literature, various other factors such as traffic conditions [33], environmental conditions, the external 
force acting on EV, and road type [34] directly affect the performance of EV. Variations in the above 
parameters directly reflect in the consumption of power. The parameter which affects the drive distance 
estimation was defined in the input parameter of the FCM design. Based on the theoretical values given in 
Table 5, EV can travel 14 times of the test route (2.1 km) under no-load conditions. Yet, the actual test 
result shows that the EV can travel 11 times only. This dissimilarity is getting due to the assumptions 
made (neglecting environmental conditions and constant speed of EV). Similarly, the 2nd case (half load) 
with a 2 % slope is listed in Table 5. However, the test route was completed 8 times based on the result 
given in Table 5. According to the result of the 3rd case given in Table 5, the EV travel 6 times. These 
results show that the drive distance decreases when the load of the EV increases.  

The environmental factor, the wind force also not considered while estimating the drive distance 
and power consumption of EV (Table 2). The wind speed of 5 km/h was taken in this study based on 
[35]. When the wind speed was included in the drive distance estimation, it is observed that the drive 
distance is less than 1 turn from the total under full-load conditions. From the previous results, the 
average acceleration of the EV was found that 0.1. The range of EV is 2.5 laps if the acceleration is 
defined as 0.1 under full-load conditions. The error rate of 4.8 and 20 % are getting under no-load and 
full-load conditions. Wind speed and acceleration are important factors to reduce the error in drive 
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distance estimation. When these parameters are included in drive distance estimation the accuracy of the 
model will increase.       
 
Conclusions 

The fuzzy classification method was utilized in this study to predict the EV's driving distance for the 
specified test route. The EV's driving distance was calculated using vehicle and battery characteristics. A 
CAN protocol was used to communicate the subsystems which are present in the vehicle and the FCM 
estimates the drive distance and informs the driver. The test was carried out under 3 different test 
conditions such as no-load, half-load, and full-load. The result showed that the battery SoC and power 
consumed by the vehicle directly affect the system output. Additionally, the slope of the road also affects 
the drive distance of the vehicle. Due to the slope up to ttest point C the battery voltage was decreased 
and the power consumed by the vehicle was increased. On the other hand, the vehicle going downhill 
from test point D to the end, the battery voltage was normal and the power consumption was decreased. 
Under the suggested range estimation's no-load and full-load situations, the error rate was 4.8 and 20 %, 
respectively. Road types, driver profiles, and environmental considerations can be added to the 
parameters impacting the EV's drive distance calculation to improve accuracy. 
 
References 

[1] E Guerra. Electric vehicles, air pollution, and the motorcycle city: A stated preference survey of 
consumers’ willingness to adopt electric motorcycles in Solo, Indonesia. Transp. Res. D Transp. 
Environ. 2019; 68, 52-64.  

[2] RA Hanifah, SF Toha, NHHM Hanif and NA Kamisan. Electric motorcycle modeling for speed 
tracking and range travelled estimation. IEEE Access 2019; 7, 26821-9. 

[3] K Sarrafan, KM Muttaqi, D Sutanto and GE Town. A real-time range indicator for EVs using web-
based environmental data and sensorless estimation of regenerative braking power. IEEE Trans. 
Veh. Technol. 2018; 67, 4743-56.  

[4] S Kaya, N Kilic, T Kocak and C Gungor. A battery-friendly data acquisition model for vehicular 
speed estimation. Comput. Electr. Eng. 2016; 50, 79-90.  

[5] J Bi, Y Wang, S Shao and Y Cheng. Residual range estimation for battery electric vehicle based on 
radial basis function neural network. Measurement 2018; 128, 197-203.  

[6] J Bi, Y Wang, Q Sai and C Ding. Estimating remaining driving range of battery electric vehicles 
based on real-world data: A case study of Beijing, China. Energy 2019; 169, 833-43.  

[7] C Chellaiah, K Thangamani, PG Subin, P Rathinakumar and P Muthukrishnan. Design of a fuel free 
electric vehicle. In: VV Das and Y Chaba (Eds.). Mobile communication and power engineering. 
Springer, Berlin, Heidelberg, 2013, p. 296. 

[8] C Chellaswamy, L Balaji and T Kaliraja. Renewable energy based automatic recharging mechanism 
for full electric vehicle. Eng. Sci. Technol. Int. J. 2020; 23, 555-64. 

[9] C Chellaswamy. Performance analysis of a wind duct and SOC estimation for pure electric vehicle 
charging. Int. J. Control Theory Appl. 2016; 9, 27-43. 

[10] N Chang, MA Faruque, Z Shao, CJ Xue, Y Chen and D Baek. Survey of low-power electric 
vehicles: A design automation perspective. IEEE Des. Test 2018; 35, 44-70.  

[11] R Basso, B Kulcsar, B Egardt, P Lindroth and I Sanchez-Diaz. Energy consumption estimation 
integrated into the electric vehicle routing problem. Transp. Res. D Transp. Environ. 2019; 69, 141-
67.  

[12] HA Yavasoglu, YE Tetik and K Gokce. Implementation of machine learning based real time range 
estimation method without destination knowledge for BEVs. Energy 2019; 172, 1179-86.  

[13] C Pan, W Dai, L Chen, L Chen and L Wang. Driving range estimation for electric vehicles based on 
driving condition identification and forecast. AIP Adv. 2017; 7, 105206. 

[14] N Daina, A Sivakumar and JW Polak. Modelling electric vehicles use: A survey on the methods. 
Renew. Sustain. Energy Rev. 2017; 68, 447-60.  

[15] GD Nunzio and L Thibault. Energy-optimal driving range prediction for electric vehicles. In: 
Proceedings of the IEEE Intelligent Vehicles Symposium, Los Angeles, CA, USA. 2017, p. 1608-
13.  

[16] X Qi, G Wu, K Boriboonsomsin and MJ Barth. Data-driven decomposition analysis and estimation 
of link-level electric vehicle energy consumption under real-world traffic conditions. Transp. Res. D 
Transp. Environ. 2018; 64, 36-52.  

 



Trends Sci. 2021; 18(22): 32   15 of 15 
  

[17] F Duran, S Ceven and R Bayir. Drive mode estimation for electric vehicles via fuzzy logic. In: 
Proceedings of the 22nd International Conference Electronics, Palanga, Lithuania. 2018, p. 62-7.  

[18] J Hong, S Park and N Chang. Accurate remaining range estimation for electric vehicles. In: 
Proceedings of the 21st Asia and South Pacific Design Automation Conference, Macao, China. 
2016, p. 781-6. 

[19] V Gass, J Schmidt and E Schmid. Analysis of alternative policy instruments to promote electric 
vehicles in Austria. Renew. Energy 2014; 61, 96-101. 

[20] VR Tannahill, D Sutanto, KM Muttaqi and MA Masrur. A future vision for reduction of range 
anxiety by using an improved state of charge estimation algorithm for electric vehicle batteries 
implemented with low-cost microcontrollers. IET Electr. Syst. Transp. 2015; 5, 24-32. 

[21] P Boyraz and D Dogan. Intelligent traction control in electric vehicles using an acoustic approach 
for online estimation of road-tire friction. In: Proceedings of the IEEE Intelligent Vehicles 
Symposium, Gold Coast, QLD, Australia. 2013, p. 1336-43. 

[22] M Dawei, Z Yu, Z Meilan and N Risha. Intelligent fuzzy energy management research for a 
uniaxial parallel hybrid electric vehicle. Comput. Electr. Eng. 2017; 58, 447-64. 

[23] F Kong, L Zhang, J Zeng and Y Zhang. Automatic measurement and control system for vehicle 
ECU based on CAN bus. In: Proceedings of the IEEE International Conference on Automation and 
Logistics, Jinan, China. 2007, p. 964-8. 

[24] L Wolfhard. CAN system engineering: From theory to practical applications. Springer-Verlag 
London, London, 2013. 

[25] X Wang, W Yao and G Shi. A control system of electric vehicle based on CAN bus. In: Proceedings 
of the International Conference on Advanced Mechatronic Systems, Zhengzhou, China. 2011, p. 
580-2.  

[26] E Bassi, F Benzi, L Almeida and T Nolte. Powerline communication in electric vehicles. In: 
Proceedings of the IEEE International Electric Machines and Drives Conference, Miami, FL, USA. 
2009, p. 1749-53.  

[27] Q Huang, J Li and Y Chen. Control of electric vehicle. Intech Open, 2012.  
[28] C Chellaswamy, JJ Durgadevi and S Srinivasan. An intelligent hand gesture recognition system 

using fuzzy logic. In: Proceedings of the IET International Conference on Sustainable Energy and 
Intelligent Systems, Chennai, India. 2013, p. 326-32.  

[29] M Dawei, Z Yu, Z Meilan and N Risha. Intelligent fuzzy energy management research for a 
uniaxial parallel hybrid electric vehicle. Comput. Electr. Eng. 2017; 58, 447-64.  

[30] S Çeven and R Bayir. Implementation of fuzzy logic based speed control of brushless direct current 
motors via industrial PC. Int. J. Intell. Syst. Appl. Eng. 2016; 4, 146-52. 

[31] S Tariq, S Lee, HK Kim and SS Woo. CAN-ADF: The controller area network attack detection 
framework. Comput. Secur. 2020; 94, 101857. 

[32] F Kong, L Zhang, J Zeng and Y Zhang. Automatic measurement and control system for vehicle 
ECU based on CAN bus. In: Proceedings of the IEEE International Conference on Automation and 
Logistics, Jinan, China. 2007, p. 964-8.  

[33] B Luin, S Petelin and FA Mansour. Modeling the impact of road network configuration on vehicle 
energy consumption. Energy 2017; 137, 260-71.  

[34] X Yuan, C Zhang, G Hong, X Huang and L Li. Method for evaluating the real-world driving energy 
consumptions of electric vehicles. Energy 2017; 141, 1955-68.  

[35] Meteorological data, Available at: http://www.imdchennai.gov.in, accessed April 2021. 

 
 

 
 
 
 
 
 
 
 
 
 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chellaswamy%2C%20C..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Durgadevi%2C%20J.J..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Srinivasan%2C%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7119720&sortType=desc_p_Publication_Year&searchWithin=%22First%20Name%22:c&searchWithin=%22Last%20Name%22:chellaswamy
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7119720&sortType=desc_p_Publication_Year&searchWithin=%22First%20Name%22:c&searchWithin=%22Last%20Name%22:chellaswamy
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7070493
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7070493
https://www.sciencedirect.com/science/article/pii/S0167404820301292
https://www.sciencedirect.com/science/article/pii/S0167404820301292
https://www.sciencedirect.com/science/journal/01674048
http://www.imdchennai.gov.in/

