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Abstract 

In recent years, numerous fuzzy time series (FTS) forecasting models have been widely used. One 

of the important factors for obtaining high forecasting accuracy in fuzzy time series model is that the 

lengths of intervals in the universe of discourse. In this study, a hybrid forecasting model which uses 

hedge algebra (HA) and particle swarm optimization (PSO) is proposed to determine optimal lengths of 

intervals in FTS models. In that, HA is utilized as a tool to partition the universe of discourse into inter-

vals with unequal-size corresponding to the semantic intervals calculated from the linguistic terms. After 

processing of generating the intervals, we define fuzzy sets based on the observation data of times series 

and use them to establish fuzzy relationship groups. Then, the proposed model is combined with the PSO 

technique to find the appropriate length of each interval with view to reaching the better forecasting accu-

racy rate. The performance of the proposed model is evaluated with the historical data of enrolments at 

the University of Alabama. The simulated results obtained indicate that the proposed model achieves 

higher forecasting accuracy compared other existing forecasting models and it can obtain better quality 

solutions for both the 1st-order and high-order FTS model. 

Keywords: Fuzzy time series, Fuzzy relationship group, Hedge algebras, Particle swam optimization, 

Enrolments 

 

 

Introduction 

Dealing with the time series forecasting problem, many forecasting models have been introduced to 

advance the decision-making process concerning future, such as enrollments forecast for the next year, 

temperature prediction of the coming days, annual population forecasting, financial forecasting, ... Based 

on fuzzy set theory [1], Song and Chissom [2,3] proposed 2 FTS models by using max-min operations in 

fuzzy relationships to forecast the enrollments of the University of Alabama. Compared with the previous 

traditional forecasting models, such as regression analysis, moving average, autoregressive moving aver-

age and ARIMA model, the forecasting models in articles [2,3] can make better predictions with forecast-

ing problems in which the historical data needs to be represented by linguistic values or uncertain data 

series. However, their models had many drawbacks such as huge computation when the fuzzy rule matrix 

is large and lack of persuasiveness in determining the universe of discourse and the length of intervals. 

Therefore, to avoid this shortcoming, Chen [4] developed a FTS forecasting model using simplified 

arithmetic operations rather than max-min composition operator in defuzzification process. In addition, 

research works in articles [5,6] pointed out the importance of assigning weights to resolve the issue of 

recurrent fuzzy relationship and to reflect the difference in their importance. From the expansion of the 

research [4] into a high-order fuzzy time series model [7] and the influence of the lengths of intervals in 

article [8] together with the development from the 1-factor FTS models into 2-factor FTS model [9] is the 

foundation for the strong development of FTS models in the next time periods. Recently, many authors 

have used different techniques in each stage of FTS model to improve forecasting accuracy. Chen and 

Tanuwijaya [10] used the automatic clustering method to partition the universe of discourse into different 

interval lengths in the fuzzification stage of the forecasting model. Some other researches combine opti-

mization techniques with different FTS models to adjust and find the lengths of intervals from the uni-

verse of discourse [11-22]. Based on the idea of finding the suitable interval lengths, many models used 

clustering techniques to divide time series dataset into clusters, then adjust these clusters into intervals 

with different lengths such as: K-mean cluster [23,24] and clustered C-mean [25,26]. A completely dif-
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ferent way from fuzzy approach, information granules consider to be a sound option. Just recently, sever-

al related works have been presented. Ho et al. [27] has introduced a forecasting model based on the theo-

ry of HA [28] to apply for forecasting university enrolments. In which, the HA was used to model linguis-

tic domains and variables instead of performing data fuzzification and defuzzification. In addition, Tung 

et al. [29] proposed a HA-based forecasting model to find different lengths of intervals in the universe of 

discourse by mapping the semantics of linguistic terms into fuzziness intervals. However, 2 these research 

works only focus on building a 1st-order forecasting model to forecasting the number of enrollments at the 

University of Alabama. 

From analyzing of the research works above showed that the lengths of intervals and the order of 

fuzzy relationships are 2 critical factors for forecasting accuracy. Bearing in mind the idea in the using 

HA, in this paper we propose a hybrid fuzzy time series model combining HA and PSO for forecasting 

the enrollments of the University of Alabama [4]. In this research, HA is used to partition the universe of 

discourse into unequal-sized intervals by quantifying the linguistic terms themselves which is used to 

describe the historical values of fuzzy time series. After generating the intervals, the historical time series 

dataset is fuzzified based on the defined fuzzy sets. Each fuzzified time series value is then used to create 

the FLRs and divide them into groups. Later, all these fuzzy relationship groups are utilized to obtain the 

forecasting results based on the our defuzzification principle [30]. Finally, the proposed model is com-

bined with the PSO algorithm to adjust the initial interval lengths for further increasing predictive accura-

cy. 

 

Materials and methods 

In this section, we briefly review basic concepts related to fuzzy time series [2,3], the HA [28] and 

PSO algorithm [31]. 

 

Some basic definitions of FTS 

Based on the fuzzy set theory [1], Song and Chissom [2,3] introduced the definition of FTS and 

constructed  its model by means of fuzzy relational equations, in which the values of historical time series 

data are presented by fuzzy sets. Let U = {u1, u2, … , un } be an universe of discourse; a fuzzy set A of U 

can be defined as 𝐴 = {μA(u1)/u1+, μA(u2)/u2 … + μA(un)/un}, where  μA  : U  [0,1] is the member-

ship function of A, μA(ui)  indicates the degree of membership of ui in the fuzzy set A, fA(ui) ϵ [0, 1], and 

1 ≤  𝑖 ≤  𝑛. The basic definitions related to FTS are summarized as below: 

 

Definition 1: Fuzzy time series [2,3] 

Let Y(t) (t = . . , 0, 1, 2 . . ), a subset of real numbers, be the universe of discourse on which the fuzzy sets 

fi(t) (i =  1, 2 … ) are defined in the universe of discourse Y(t) and F(t) is a collection of f1(t), f2(t), … , 

then  F(t) is called a FTS definition on Y(t) (t ..., 0, 1, 2 ...). 

 

Definition 2: Fuzzy logical relationship - FLR [2-4] 

If there exists a fuzzy relationship R(t-1,t), such that F(t) = F(t-1) R(t-1,t), where "" is an max-min 

composition operator, then F(t) is said to be caused by F(t-1). The relationship between F(t) and F(t-1) 

can be denoted by F(t-1) →  F(t). Let Ai = F(t) and Aj = F(t-1), the relationship between F(t) and F(t-1) is 

denoted by fuzzy logical relationship Ai →  Aj where Ai and Aj refer to the current state or the left-hand 

side and the next state or the right-hand side of fuzzy relationship. 

 

Definition 3: λ-order fuzzy logical relationship [7] 

Let F(t)be a fuzzy time series. If F(t) is caused by F(t-1), F(t-2),…, F(t-𝜆+1), F(t-𝜆)  then this fuzzy rela-

tionship is represented by F(t-𝜆), …, F(t-2), F(t-1)→ F(t) and is called an 𝝀-order fuzzy time series. 

 

Definition 4: Time-variant fuzzy relationship groups (TV-FRGs) [17] 

The fuzzy logical relationship is defined by the relationship F(t-1)→ F(t). If, let  F(t) =  Ai(t) and 

 F(t − 1) =  Aj(t − 1). The FLR between F(t-1) and F(t) can be denoted as Aj(t − 1) →  Ai(t). Also at 

the time t, we have the following fuzzy logical relationships:  Aj(t1 − 1) →  Ai1(t1), . . , Aj(tλ − 1) →

 Aiλ(tλ) with t1, t2, . . , tλ ≤ t. It is noted that Ai(t1), Ai (t1),…,  and Ai(t𝜆) with the same fuzzy set Ai but 

appear at different times t1, t2,…, and tn, respectively. It means that if these FLRs occur before  Aj(t −

1) →  Ai(t), we can group these FLRs into a FRG according to the left-hand side of each FLR as 

Aj(t − 1) →  Ai1(t1), Ai2(t2), … , Aiλ(tλ), Ai(t). It is named 1st- order TV-FRGs. 
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Some basis concepts of hedge algebras [28]  
HA are created by Ho and Wechler [28] in 1990. In the field of time series forecasting, this theory is 

considered as a new approach to quantify the linguistic terms differing from the fuzzy set approach. In 

this study, the concepts of HA are employed as basis to partition the universe of discourse of time series 

into initial intervals with different lengths. Assume that there is a set of linguistic values of linguistic 

variable X which are sorted as follows: 𝑋 = {Very Very low < Very low < low < Little low <
Very Little low < medium < Very Little high < Little big < high < Very high < ⋯ }. Each of linguis-

tic variable 𝒳 is represented by an algebraic structure as 𝒜𝒳 = (𝑋, 𝐺, 𝐶, 𝐻, ≤) and called HA, where X is 

the set of terms in 𝒳; ≤  denotes  a natural semantically ordering relation on X; G = {c−, c+},  c− ≤ c+, is 

the set of primary generators, in which c+ and c− are, respectively, the negative primary term and the 

positive one of a linguistic variable X, C = {0,1,w} a set of constants, with (𝟎 ≤ c− ≤  𝐖 ≤ c+ ≤ 𝟏);  

H = H− ∪ H+, với H− = {h−q ≥ ⋯ ≥ h−2 ≥ h−1} is the set of all negative hedges of X, ∀h ∈ H− then 

hc+ ≤ c+ and H+ = {h1 ≤ h2 ≤ ⋯ ≤ hp} is the set of all positive ones of X, ∀h ∈ H+ then hc+ ≥ c+. 

Example H− = {Little > Rather}, H+ = {More < Very}. ∀x ∈ X, x = hnhn−1 … h1c, hj ∈ H with c ∈ G. 

If X and H are linearly ordered sets, then 𝒜𝒳 = (X, G, C, H, ≤)  is called linear HA, furthermore, if AX is 

equipped with additional operations  and  that are, respectively, infimum and supremum of H(x), then 

it is called complete linear hedge algebras (ClinHA) and denoted 𝒜𝒳 = (X, G, C, H,, ≤) [32]. Some 

general definitions of HA are given as follows: 

  

 Definition 5: Let AX = (X, G, C, H, ) be a ClinHA. fm: X → [0, 1] is said to be a fuzziness 

measure of terms in X if: 

 1) fm(c−) + fm(c+) = 1 and  ∑ fm(hx) = fm(x)h∈H , with ∀x ∈ X.  

 2) For the constants 𝟎, 𝐖 and 𝟏, fm(𝟎) = fm(𝐖) = fm(𝟏) = 0.  

 3) For ∀x, y ∈ X, ∀h ∈ H, 
fm(hx)

fm(x)
=

fm(hy)

fm(y)
, that is this proportion does not depend on specific 

elements and, therefore, it is called fuzziness measure of the hedge h and denoted by (h). The properties 

of fm(x) and (h) are introduced as follows: 

 

 Proposition 1: Let fm is the fuzziness measure function on X, the following statements hold. 

With  ∈ 𝑋, 𝑥 = ℎ𝑛ℎ𝑛−1 … ℎ1𝑐, ℎ𝑗 ∈ 𝐻, 𝑐 ∈ 𝐺 

 1) fm(hx) = (h)fm(x), ∀x ∈ X. 

 2) ∑ 𝑓𝑚(ℎ𝑖𝑐) = 𝑓𝑚(𝑐)−𝑞<𝑖<𝑝,𝑖≠0 . 

 3) ∑ 𝑓𝑚(ℎ𝑖𝑥) = 𝑓𝑚(𝑥)−𝑞<𝑖<𝑝,𝑖≠0 . 

 4) 𝑓𝑚(𝑥) = 𝑓𝑚(ℎ𝑛ℎ𝑛−1 … ℎ1𝑐) = 𝜇(ℎ𝑛)𝜇(ℎ𝑛−1) … 𝜇(ℎ1)𝑓𝑚(𝑐). 

 5) ∑ 𝜇(ℎ𝑖)
−𝑞
𝑖=−1 = 𝛼 and  ∑ 𝜇(ℎ𝑖)

𝑝
𝑖=1 = 𝛽, with ,  > 0 and  +  = 1. 

 

 

 

 

 

Figure 1 The order of elements 𝑥 ∈ 𝑋, ℎ𝑗 ∈ 𝐻, 𝑐 ∈ 𝐺. 

 

 Definition 6: The fuzziness interval of the linguistic terms x ∈ X, denoted by (x), is a subinterval 

of [0,1], if |(x)| = fm(x) where |(x)| is the length of fm(x), and recursively determined by the length of 

x as follows: 

 1) If length of x is equal to 1 (l(x) = 1), that mean x ∈ {c-, c+}, then |ℑ(c-)| = fm(c-), |ℑ(c+)| = fm(c+) 

and ℑ(c-) ≤ ℑ(c+);  

 2) Suppose that n is the length of x (l(x) = n) and fuzziness interval ℑ(x) has been defined with |ℑ(x)| 

= fm(x). The set {(hjx)| j  [-q^p]}, where [-q^p] = {j | -q ≤ j ≤ -1 or 1 ≤ j ≤ p}, is a partition of (x) and 

we have: for Sgn(hpx) = –1, (hpx) ≤ (hp-1x) ≤ … ≤ (h1x) ≤ (h-1x) ≤ … ≤ (h-qx); for Sgn(hpx) = +1, 

(h-qx) ≤ (h-q+1x) ≤ … ≤ (h-1x) ≤ (h1x) ≤ … ≤ (hpx). 

 

 

0 1 

fm൫hpc−൯ fm(h1c−) fm(h−1c−) fm൫h−qc−൯ fm൫h−qc+൯ fm(h−1c+) fm(h1c+) fm൫hpc+൯ 

𝐖 
fm(c+) fm(c−) 
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Particle swarm optimization algorithm 

PSO algorithm had been proposed by Kannedy and Eberhart [31] in 1965. It is considered as a tool 

to resolve with optimization problems, where a set of potential solutions is represented by a swarm of 

particles and each particle is move through the search space (d-dimensional space) for search the optimal 

solution. When particles moving, all particles (i.e, N particles) have fitness values which are evaluated by 

fitness function and the position of the best particle among all particles found so far is kept and each par-

ticle keeps its personal best position which has passed previously. In the movement process of particles, 

each kth (1 ≤ k ≤ N) particle  associated with the velocity vector Vki = [𝑣𝑘,1, 𝑣𝑘,2, … , 𝑣𝑘,𝑑] and the position 

vector Xki = [𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑑] of particle are updated by the best position 𝑃𝑏𝑒𝑠𝑡_𝑘𝑑 = [ 𝑝𝑘,1, 𝑝𝑘,2, … , 𝑝𝑘,𝑑] 

encountered by the particle so far and the best position global Gbest = min (𝑃𝑏𝑒𝑠𝑡_𝑘𝑑
𝑡 ) found by the overall 

best out of all the particles in the population. The briefly summarizes steps of the standard PSO algorithm 

in Algorithm 1 as follows: 

 

Algorithm 1 The standard PSO algorithm 

Step 1: Initialize random positions xki ; random velocities vki in d dimensional space (i = 1,2,…,d); 

 Positions of each particle are randomly determined and saved in a vector Xkd as follows:  

 

Xki = [𝑥𝑘,1, 𝑥𝑘,2, … , 𝑥𝑘,𝑑]                                                            (1) 

  

Where; 𝑥ki denotes ith position of kth particle. N is the number of particles in a swarm; 

  Velocities are randomly determined and stored in a vector Vkd given below: 

 

Vki = [𝑣𝑘,1, 𝑣𝑘,2, … , 𝑣𝑘,𝑑]                                                                    (2) 

 

Step 2: According to the fitness function value f(x), the values of 𝑃𝑏𝑒𝑠𝑡_𝑘𝑑 and Gbest of particles 

given in Eq. (3) are determined as: Pbest_kd = [ pk,1, pk,2, … , pk,d]. 

Where, 𝑃𝑏𝑒𝑠𝑡_𝑘𝑑 is a vector stores the positions corresponding to the kth particle's best individual per-

formance and calculated as:  

 

𝑃𝑏𝑒𝑠𝑡_𝑘𝑑
𝑡+1  𝑓(𝑥) = {

𝑃𝑏𝑒𝑠𝑡_𝑘𝑖
𝑡+1  ,   𝑖𝑓 𝑓(𝑥𝑘𝑖

𝑡+1) > 𝑃𝑏𝑒𝑠𝑡_𝑘𝑖
𝑡

𝑓(𝑥𝑘𝑖
𝑡+1),  𝑖𝑓 𝑓(𝑥𝑘𝑖

𝑡+1)  ≤ 𝑃𝑏𝑒𝑠𝑡_𝑘𝑖
𝑡                       (3) 

 

and Gbest = minimum (𝑃𝑏𝑒𝑠𝑡_𝑘𝑖) denotes the best one of all personal best positions of all particles 

within the swarm. 

 

Step 3: c1 and c2 are 2 learning factors which control the influence of the social and cognitive 

components (c1 = c2= 2), respectively. ω  is the time-varying inertia weight. 

In each iteration t, the parameter ω is calculated as follows: 

 

𝜔𝑡 = 𝜔𝑚𝑎𝑥 −
𝑡∗( 𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟_𝑚𝑎𝑥
                              (4)            

 

Where,  𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 denotes the maximum iteration number. 

 

Step 4: The new velocity and position of each particle can be updated by using the current velocity 

and distance from the 𝑃𝑏𝑒𝑠𝑡 to 𝐺𝑏𝑒𝑠𝑡  as shown in Eqs. (4) and (5), respectively. 

 

Vki
t+1 =  ωt ∗  Vki

t + c1 ∗ R1( ) ∗ ൫P𝑏𝑒𝑠𝑡_𝑘𝑑 − Xki
t ൯ + c2 ∗ R2( ) ∗ ( Gbest − Xki

t )                (5) 

 

 Xki
t+1 = Xki

𝑡 + Vki
t+1                                  (6)  

 

Where, R1 and R2 are generated random values in the domain [0,1]. 
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Step 5: Steps 2 to 4 are repeated until a predetermined maximum iteration number (𝑖𝑡𝑒𝑟_𝑚𝑎𝑥) is 

reached. 

A hybrid FTS forecasting model based on HA and PSO 

This section, we introduce a novel FTS forecasting model which is combined between HA and PSO 

for improving forecasted accuracy. The framework of proposed model is presented in Figure 2, including 

3 stages; the 1st stage is to partition the historical data into initial intervals based on HA; the 2nd stage is to 

establish the FTS model and create forecasting rules and the final stage is to find optimal lengths of inter-

vals by applying PSO algorithm. To implement these stages, all historical enrollments data [4] are utilized 

for illustrating forecasting process. This dataset has been selected to forecast with the great amount of 

research works which have been published in the literatures [3,4,6-9,10-12,14,15,17,21-24,27,29,30]. The 

3 stages of proposed model are present as follows. 

 

 

 

Figure 2 flowchart of the proposed FTS forecasting model. 

 

Stages 1 and 2: Constructing forecasting model based on FTS and HA 

In this section, a forecasting model based on combining the FTS and HA for forecasting enrolments 

of the University. Initially, the HA is applied to divide the universe of discourse into initial intervals with 

unequal-lengths by quantitative mapping of linguistic terms into fuzzy intervals. Based on these newly 

obtained intervals, we defined fuzzy sets and fuzzy historical data on each divided interval. From these 

fuzzified values, we derive the FLRs and establish fuzzy relationship groups according to [17]. Later, all 

these FRGs are used to obtain the forecasting results based on the defuzzification method [30]. The pro-

posed forecasting model can be given step-by-step as follows: 

 

Step 1: Define the universe of discourse U of historical time series data 

Let U = [Dmin −  D1, Dmax + D2] is universe of discourse. To define U, the minimum value Dmin and 

the maximum value Dmax of the historical time series data is defined.  In order to ensure the forecasting 

values bounded in the universe of discourse U 2 positive integers  D1  and D2 are properly selected, re-
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spectively. From historical enrolments time series, U is defined as U = [13000, 20000], where Dmin,  = 

13055, Dmax = 19337, D1 = 55, D2 = 663, LU = 7000. 

Step 2: Partition U into different intervals based on HA 

This step uses HA with structure as 𝒜𝒳 = (𝑋, 𝐺, 𝐶, 𝐻, ≤), where X is the set of terms of the linguistic 

variable “enrollments”{X = dom(enrollments)};  ≤  denotes  a natural semantically ordering relation on 

X; 𝐺 = {𝑐−, 𝑐+} = {Low, High}, Low (Lw) ≤ High (Hi); C = {0, w, 1} a set of constants, with (0 ≤ 𝑐− ≤
 𝑊 ≤ 𝑐+ ≤ 1) and H = {Very, Little}. To compare the forecasted results of the proposed model with 

other models. In this paper, we use the number of intervals equal to 7 and 14 which are the number of 

linguistic terms used to quantify the time series values. In particular, suppose that the linguistic terms are 

given in Table 1. Based on these linguistic terms, we define the corresponding intervals of them in do-

main U. 

 

 

Table 1 The number of language terms. 

Number of   

linguistic terms 
Linguistic terms and its order 

7 

A1 = Very Very Low (VVLw) < A2 = Little Verry Low (LVLw) < A3 = Little Little 

Low (LLLw) < A4 = Very Little Low (VLLw) < A5 = Very Little High (VLHi) < 

A6 = Little Little High (LLHi) < A7 = Very High (VHi) 

14 

A1 = VVLw < A2 = LLVLw < A3 = VLVLw < A4 = VLLLw< A5 = LLLLw < 

A6 = LVLLw < A7 = VVLLw < A8 = VVLHi < A9 = LVLHi < A10 = LLLHi < 

A11 = VLLHi < A12 = VLVHi <A13 = LLVHi < A14 = VVHi 
 

 

Step 2.1: The domain U = [13000, 20000] is mapped to the domain [0,1]  

Suppose the value of 16807 in the time series dataset is the average value, then we can set up the follow-

ing parameters: fm(Low) =  
16807 − 13000

20000 − 13000
= 0.544,  fm(High) = 1 - 0.544 = 0.456 and LU = 20000 – 

13000 = 7000. Mapping these values to U, we have covfm(Low) and covfm(High) that are determined, 

respectively as fm(Low)×LU = 0.544×7000 = 3808, fm(high)×LU = 0.456×7000 = 3192. In this paper, 

we can choose (Little) = 0.48, (Very) = 1 - 0.48 = 0.52. Based on (Little), (Very) value, the value of 

 ,  is defined as 0.48, 0.52, respectively.  

From here, the fuzziness interval of linguistic terms in the domain [0,1] can be calculated: 

fm(VVLw) = 0.1471, fm(LVLw) = 0.1358, fm(LLLw) = 0.1253, fm(VLLw) = 0.1358, fm(VLHi) = 

0.11138, fm(LLHi) = 0.1051, fm(VHi) = 0.2371. 

 

Step 2.2: Define the fuzzy interval of linguistic variable in the universe of discourse 

Based on Step 2.1, the linguistic values of terms belong to fuzziness interval is calculated as follows: 

covfm(A1) = µ(Verry)×µ(Very)×covfm(Low) = 0.52×0.52×3808 = 1029.683; 

covfm(A2) = µ(Little)×µ(Very)×covfm(Low) = 0.48×0.52×3808 = 950.477; 

covfm(A3) = µ(Little)×µ(Little)×covfm(Low) = 0.48×0.48×3808 = 479.36; 

covfm(A4) = µ(Very)×µ(Little)×covfm(Low) = 0.52×0.48×3808 = 950.477; 

-----------------------------------------------------------------------------------------------; 

covfm(A7) = µ(Very)×covfm(High) = 0.52×3192 = 1659.84 

Mapping the value of linguistic terms to the domain of the universe of discourse U, we get the intervals 

corresponding to linguistic terms, which are listed as below: 

For 7 linguistic terms, obtaining 7 intervals as u1 = [13000, 14029.68), u2 = [14029.68, 14980.2), 

u3 = [14980.2, 15,857.5), u4 = [15857.5, 16808), u5 = [16808, 17605), u6 = [17605, 18340.16), u7 = 

[18340.16, 20000]. 

For 14 linguistic terms, obtaining 14 intervals as u1 = [13000, 13539.5), u2 = [13539.5, 14079), u3 

= [14079, 14438.5), u4 = [14438.5, 14798), u5 = [14798, 15157.5), u6 = [15157.5, 15517), u7 = [15517, 

15756.5), u8 = [15756.5, 15996), u9 = [15996, 16316.5), u10 = [16316.5, 16637), u11 = [16637, 17117.5), 

u12 = [17117.5, 17598), u13 = [17598, 18799), u14 = [18799, 20000]. 
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Step 3: Define linguistic terms 𝐴𝑖 which represented by fuzzy sets 

Each of interval in Step 2 represents a linguistic value of linguistic variable “enrolments”. For 7 intervals, 

there are 7 linguistic values to represent different regions in the universe of discourse on U. Each linguis-

tic value represents a fuzzy set 𝐴𝑖  and its definitions is described in Eqs. (7) and (8) as follows: 

 

Ai =  
𝑎𝑖1

u1
⁄ +

𝑎𝑖2
u2

⁄ +. . . +
𝑎𝑖𝑗

u𝑗
⁄ + ⋯ +

𝑎𝑖7
u7

⁄                      (7) 

 

𝑎𝑖𝑗 =  {
1                                 𝑗 = 𝑖

0.5   𝑗 = 𝑖 − 1 𝑜𝑟 𝑗 = 𝑖 + 1
0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (8) 

 

Here, the symbol ‘+’ denotes the set union operator, aij ∈[0,1] (1 ≤ i ≤  7, 1 ≤ j ≤ 7), uj is the jth in-

terval of the universe of discourse. The value of aij indicates the grade of membership of uj in the fuzzy 

set Ai. For simplicity, the different membership values of fuzzy set Ai are selected by according to trian-

gular membership function and which is defined Eq. (8). From Eqs. (7) and (8), a fuzzy set contains 7 

intervals. Contrarily, each of interval belongs to all fuzzy sets with different membership degrees. There-

fore, based on the obtained intervals from enrollments dataset, the corresponding linguistic values are 

illustrated in Figure 3. 

 

 

 

Figure 3 The fuzzy sets are defined by intervals using the triangular membership function. 

 

 

Step 4: Fuzzy the historical time series data 

To fuzzify the historical time series data, it is essential to obtain the degree of membership value of each 

data value belonging to each u𝑖 for each year. If the maximum membership value of 1 day’s observation 

occurs at u𝑖 , and (1 ≤ i ≤  7), then the fuzzified value for that particular year is considered as A𝑖. For 

example, the historical enrolment of year 1972 is 13563, and it belongs to interval u1 because 13563 is 

within [13000, 14078.56). So, we then assign the linguistic value ‘‘Very Very Low” (e.g., the fuzzy set 

A1) corresponding to interval  u1 to it. Considering 2 time series data Y(t) and F(t) at year t, where Y(t) is 

actual data and F(t) is the fuzzy set of Y(t). According to Eq. (7), the fuzzy set A1 has the maximum 

membership value at the interval u1. Therefore, the historical data time series on date Y(1972) is fuzzi-

fied to A1. The completed fuzzified results of the enrolments data are presented in Table 2. 

 

 

Table 2 Fuzzified historical enrollments data of the University of Alabama. 

Year Real data Fuzzy sets Linguistic values 

1971 13055 A1  Very Very Low 

1972 13563 A1  Very Very Low 

--- --- --- -------------- 

1991 19337 A7  Little Little High 

1992 18876 A7  Little Little High 
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Step 5: Create all -order fuzzy logical relationships ( ≥ 1). 

Based on Definitions 3 and 4, to establish a -order fuzzy logical relationship, we should find out any 

relationship which has the F(t − ), F(t −  + 1), . . . , F(t − 1) → F(t), where F(t − ), F(t −  +
1), . . . , F(t − 1) and F(t) are called the current state and the next state, respectively. Then a -order fuzzy 

relationship in the training phase is got by replacing the corresponding linguistic values. For example, 

supposed  = 1 from Table 2, a fuzzy relation A1 → A1 is got as F(1971) → F(1972). So on, we get the 

1st-order fuzzy relationships are shown in column 4 of Table 3, where there are 22 fuzzy relationships; 

the first 21 relations are called the trained patterns, and the last one is called the untrained pattern (in the 

testing phase). For the untrained pattern, relation 22 has the fuzzy relation A7 → # as it is created by the 

relation F(1992) → F(1993), since the linguistic value of F(1993) is unknown within the historical data, 

and this unknown next state is denoted by the symbol ‘#’. The same way, suppose  = 2, a fuzzy relation-

ship (A1, A1) → A1 is got as (F(1971), F(1972)) → F(1973). The complete 2-order fuzzy relationships are 

listed in column 5 of Table 3. 

 

 

Table 3 The complete the 1st-order and the 2nd-order FLRs. 

No Year Fuzzy set 1st-order FLRs 2nd-order FLRs 

 1971 A1    

1 1972 A1  A1  → A1   

2 1973 A1  A1  → A1  A1 , A1  → A1 

3 1974 A2  A1 → A2 A1 , A1 → A2 

--- --- --- --- --- 

21 1992 A7 A7  → A7  A7 , A7  → A7 

22 1993 # A7  → # A7 , A7  → # 

 

 

Step 6: Construct all fuzzy relationship groups (FRGs) 

In this step, an approach is different from the approach in articles [4,10-14] in the way where the fuzzy 

relationship groups are created. In previous approaches [4,5], the recurrent FLRs were simply ignored 

when fuzzy relationship groups were established or these repeated fuzzy relationships is mentioned, but it 

is not suitable at each of forecasting time, respectively. In this study, we rely on a concept of time-variant 

fuzzy logical relationship group [17] which presented in Definition 5 to create FRGs, called TV-FRGs. 

To explain this, assume that  = 1. We consider the 3 1st-order FLRs at 3 different times t = 1972, 1973, 

1974 in column 4 of Table 3 as follows: F(t = 1972):   A1 →  A1; F(t = 1973):  A1 →  A1; F(t = 1974):  A1 

→  A2; all of them with the same fuzzy set  A1 on the left – hand side. Then, if considering at forecasting 

time t = 1992, we have obtained a 1st-order FRG (i.e., No 1) as follows:  A1 →  A1. With forecasting time 

t = 1993, before that there 2 FLRs with the same on left-hand side, these FLRs can be grouped into a FRG 

as No 2: A1 → A1,  A1. With forecasting time t as 1994, then the group G3 is expressed as follows  A1 → 

 A1,  A1,  A2. The similar explanation for   = 2, we complete the all 1st-order and 2nd-order TV-FRGs and 

shown in column 2 and column 3 of Table 4, respectively.  

 

 

Table 4 The complete the 1st-order and 2nd-order TV-FRGs. 

No 1st-order TV-FRGs 2nd-order TV-FRGs 

1  A1 →  A1 ( A1,  A1) →  A1 

2  A1 →  A1,  A1 ( A1,  A1) →  A1,  A2 

3  A1 →  A1,  A1,  A2 ( A1,  A2 ) →  A3 

-- --- --- 

20 A7  → A7 , A7 (A7, A7) → A7, A7 

21 A7  → A7 , A7, A7 (A7, A7) → # 

22 A7 → #  
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Step 7: Defuzzify and calculate the forecasting output values 

The last step of the proposed model is to defuzzify the forecasting state to a crisp output value from fuzzy 

forecasting rules. In particular, to defuzzify the fuzzified data values, the our defuzzified principle in arti-

cle [30] is presented to compute the forecasted value for all 1st-order and high-order time variant FRGs in 

training phase. Next, we use a defuzzified principle [14] for computing with the unknown linguistic value 

in testing phase. The forecasting principles is presented as follows: 

 

Principle 1: Apply to calculate forecasting output value in the training phase 

To calculate forecasting value output based on information of the each group. We divide each corre-

sponding interval with respect to the fuzzy sets in the next state of the TV-FRGs into 3 sub-intervals with 

the same length. The forecasted value for each group is defined as follows: 

 

Forecasted_value = 
1

2∗𝑛
∑ (𝑠𝑢𝑏𝑚𝑖𝑘

𝑛
𝑖=1 + 𝑉𝑎𝑙𝑢𝑒_𝑙𝑢𝑖𝑘)                                  (9) 

 

Where, n denotes the total number of fuzzy sets on the next state of TV-FRG. 

 𝑠𝑢𝑏𝑚𝑖𝑘 denotes the midpoint value of one of 3 sub-intervals ( 1 ≤ 𝑘 ≤ 3) with respect to i-th 

linguistic value in the next state of FRG that the real data at forecasting time falls into this sub-

interval. 

 𝑉𝑎𝑙𝑢𝑒_𝑙𝑢𝑖𝑘  is one of 2 values belongs to the lower bound and upper bound value of one of 3 

sub-intervals which has the real data at forecasting time falls within sub-interval 𝑢ik (i.e., 𝑢ik = 

[𝐿𝑖𝑘 , 𝑈𝑖𝑘]).  

 If the real data value at forecasting time minors the midpoint value of sub-interval 𝑢ik, then  

𝑉𝑎𝑙𝑢𝑒_𝑙𝑢𝑖𝑘 is assigned as the lower bound of sub-interval 𝑢ik; else 𝑉𝑎𝑙𝑢𝑒_𝑙𝑢𝑖𝑘 is assigned as 

the upper bound of sub-interval 𝑢ik. 

 

For example, suppose that we want to calculate the forecasting value in year 1972. Based on column 4 of 

Table 5 shown that the 2nd-order fuzzy relationship group G1 (A1 → A1) is formed from a FLR with next 

state A1 appearing at year 1972, where the highest membership degree of A1 fall into interval 𝑢1 =
[13000, 14029.68). Thus, we partition the interval 𝑢1 into 3 sub-intervals which are 𝑢1.1 =
[13000, 13343.23), 𝑢1.2 = [13343.23, 13686.45) and 𝑢1.3 = [13686.45, 14029.68), respectively. In 

addition, the historical data of year 1972 with respect to linguistic value A1 of 13563 and it fall within 

sub-interval 𝑢1,2 = [13343.23, 13686.45). The The corresponding mid-value for the sub-interval 𝑢1.2 is 

𝑠𝑢𝑏𝑚1.2 (13514.84). Following, the value of 𝑉𝑎𝑙𝑢𝑒_𝑙𝑢𝑖𝑘 obtained by comparing between the real value 

of year 1972 and the midpoint value of sub-interval 𝑢1.2. By this way, the value of 𝑉𝑎𝑙_𝑙𝑢𝑖𝑘 (𝑉𝑎𝑙_𝑙𝑢21) is 

assigned equal to 13686.45. Finally, the forecasting output value of year 1972 can be computed according 

to Eq. (10) as follows:  

 

Forecasted _value = 
1

2
(13514.84 + 13686.45) =  13600.65                (10) 

 

By the same way, we can get the forecasting value for the 2nd-order fuzzy relationship group ((A1, A1) → 

A1) appearing at year 1973 as 13943.9. 

 

Principle 2: Using for calculating forecasting output value in the testing phase 

For testing phase, we calculate forecasted value for a group of fuzzy relationship which has the unidenti-

fied linguistic value on the right-hand side based on the master vote scheme [14]. Assume there a -order 

fuzzy relationship group as At− , At−(+1), At1 → #, the forecasting value is estimated according to Eq. 

(11), where the symbol 𝑤ℎ is the highest votes predefined by user for each other problem,  is the order 

of the FLRs, the symbols 𝑀𝑡−1, 𝑀𝑡−2… and 𝑀𝑡− are the middle values of the corresponding intervals 

which related to the latest fuzzy set and other fuzzy sets on the left-hand side of fuzzy relationship group 

having the maximum membership values of At−1, At−2, …, and At− occur at intervals ut1, ut2,..., and 

ut−, respectively. 

 

𝐹𝑜𝑟𝑒𝑐𝑎𝑡𝑒d_value =
(𝑀𝑡−1∗𝑤ℎ)+𝑀𝑡−2+⋯+𝑀𝑡−

𝑤ℎ+(−1)
                                      (11) 
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Based on the 2 forecasting principles above and fuzzy relationship groups in Table 4, we complete fore-

casting results for the enrolments the period from 1971 to 1992 based on 1st-order and high-order time 

variant FRGs under 7 intervals are shown in column 4 and 5 of Table 5, respectively. 

 

 

Table 5 The complete forecasted outputs based on the 1st-order and 2nd-order FTS. 

Year Actual data Fuzzy set 
1st-order forecasted 

value 

2nd-order forecasted 

value 

1971 13055 A1 --- --- 

1972 13563 A1 13600.6 --- 

1973 13867 A1 13772.3 13943.9 

1974 14696 A2 14095.7 14343.2 

--- --- --- --- --- 

1991 19337 A7 19308.4 19308.4 

1992 18876 A7 19124 19031.8 

MSE   129623.34 70188.37 

 

 

The efficiency of the proposed forecasting model is evaluated using various statistical indexes, 

namely Mean Square Error (MSE) and Mean Absolute Percentage Error (RMSE). The lower value of 

MSE, RMSE indicates better performance of proposed model. The evaluation criterions are determined 

by the following equations: 

 

MSE = 
1

n
∑ (Fi − Ri)

2n
i =                        (12) 

 

RMSE =  √
1

n
∑ (Fi − Ri)

2n
i =                        (13) 

 

Where, Ri and Fi note the actual and forecasted value at time i, respectively, n is the total number of years 

to be forecasted,  is the order of fuzzy logical relationship. 

 

Stage 3: A hybrid FTS forecasting model based on combining the HA and PSO 
In this section, we present the hybrid FTS forecasting model by combining HA and PSO algorithm 

with the aim to improve forecasting accuracy. In which, PSO algorithm is used to minimize the MSE 

value by adjusting the lengths of the initial intervals which are determined by HA and membership val-

ues, respectively. The proposed forecasting model is named FTSHA-PSO. The briefly explanation of the 

FTSHA-PSO are given as following. In the FTSHA-PSO model, for the training phase, each particle is 

used to represent the partitioning of time series data (e.g., n intervals). Assume that the lower bound and 

upper bound of the universe of discourse U be 𝑥0 and 𝑥𝑛, respectively. Each particle denotes a vector 

containing of n-1 elements as 𝑥1, 𝑥2, …, 𝑥𝑛−2 and 𝑥𝑛−1, where (1 ≤ 𝑖 ≤  𝑛 − 1) and 𝑥𝑖 ≤  𝑥𝑖+1. From 

these n-1 elements, define the n intervals as 𝑢1 = [𝑥0, 𝑥1], 𝑢2 = [𝑥1, 𝑥2],,..., 𝑢𝑖 = [𝑥𝑖−1, 𝑥𝑖],…  and 𝑢𝑛 =
[𝑥𝑛−1, 𝑥𝑛], respectively. In case of movement of particle in a swarm from 1 position to another position, 

the elements of the corresponding new array always require to be adjusted in an ascending order such that 

𝑥1 ≤  𝑥2 ≤ ⋯ ≤  𝑥𝑛−1. In processing for the training phase, the FTSHA-PSO model permits each particle 

moving form current position to other position by Eqs. (5) and (6), and repeats the steps until the stopping 

criterion is satisfied. If the stopping criterion is satisfied, then all the FRGs obtained by the global best 

position (𝐺𝑏𝑒𝑠𝑡) among all personal best positions (𝑃𝑏𝑒𝑠𝑡) of all particles which used to forecast the new 

testing data in testing phase. Here, the MSE value in Eq. (12) is used to evaluate the forecasted accuracy 

of each particle. The complete steps of the proposed model are presented in Algorithm 2 as follows: 

 

 

 

 

 

 

Algorithm 2 The FTSHA-PSO algorithm in the training phase 
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1 Input: Historical time series data 
2 Output: The forecasting results and the MSE value (MSE = Gbest = min(Pbest)) 

Begin 

3 Define the initial intervals by applying HA and use forecasting steps in Subsection above to 

reach the initial forecasting accuracy (MSE). 

4. Initialize: a population of N particles 

 The initial position Xki and the velocity Vki of all particles, respectively. 

 The initial personal best position vectors of the kth particle is the same as its initial posi-

tion vector at the beginning and find Gbest 

5. do   

5.1. for each particle k, (1≤ k ≤ N)  do 

 Following the steps in the part above sequentially, from step 3 to step 7 such as: defin-

ing linguistic terms, fuzzify all historical, determining all   − order fuzzy logical rela-

tionships, establishing all   − order TV-FRGs, defuzzify forecasting values, calculating 

the MSE value for each particle 

 The new Pbest of all particles is saved according to the MSE values. 

end for 

5.2. The new Gbest of all particles is saved according to the MSE values  

6. for each particle k, (1 ≤ k ≤ N)  do 

  The particle k is moved to another position according to Eqs. (5) and (6) 

end for  

 Update 𝜔 according to Eq. (4) 

while (the maximum moving steps(iter_max) or the minimum MSE are reached) 

End. 

 

Algorithm 3 The FTSHA-PSO algorithm in the testing phase 

The proper lengths of intervals and order of FLRs obtained in Algorithm 2 that are used to esti-

mate untrained data in the testing phase based on the Principle 2 in the proposed model. 

 

Example: The illustrating of the FTSHA-PSO model in the training phase is presented as follows. 

In this example, let the number of intervals and particles be 7 and 4 respectively, and the FTSHA-PSO 

model uses the PSO to obtain all the 2nd-order FLRs by adjusting the length of intervals for the historical 

enrolments data. In proposed FTS model, we have the universe of discourse on U = [13000, 20000], 

where lower bound x0 = 13000 and upper bound x7 = 20000, respectively. For finding the optimal solu-

tion, we define values for the parameters used in Eqs. (5) and (6) as: The range of x𝑘𝑖 be limited to 

(13000, 20000], the range of v𝑘𝑖  be limited to [–100, 100], the values of C1 and C2 be 2, and the value of 

𝜔 = 0.9 (where 𝜔 linearly decreases its value to the lower bound, 0.4, through the whole training process) 

and maximum number of iterations be 2, respectively. The positions and velocities of all particles are 

initialized randomly and listed in Tables 6 and 7, respectively. 

In Table 6, we have shown the 7 intervals for each particle which are  𝑢1 = [𝑥0, 𝑥1], 𝑢2 =
[𝑥1, 𝑥2],..., 𝑢𝑖 = [𝑥𝑖−1, 𝑥𝑖],… and 𝑢𝑛 = [𝑥𝑛−1, 𝑥𝑛], respectively. Where, the intervals of the initial position 

of particle 1 are established as the same the one which are created from HA in Subsection 3.1 and listed 

as u1 = [13000, 14029.68), u2 = [14029.68, 14980.2), u3 = [14980.2, 15857.5), u4 = [15857.5, 16808), 

u5 = [16808, 17605), u6 = [17605, 18340.16), u7 = [18340.16, 20000]. Next, we follow the steps of Algo-

rithm 2 and achieve the optimal intervals which are utilized for obtaining the forecasting results. The 

MSE value of particle1 is calculated based on Eq. (12). The MSE values for the remaining 3 particles are 

found in a similar manner. Based on the corresponding MSE value, every particle updates its own  person-

al best positions (Pbest) so far. For simplicity, the initial Pbests are considered for the initial positions of 

all particles. The Pbests of all particles so far are shown in Table 8.  From Table 8, the global best posi-

tion Gbest = min(Pbest) is created by particle 3, because its MSE value is the least among all  particles so 

far. After the 1st iteration, all particles move to the 2nd positions according to Eqs. (5) and (6). The 2nd 

positions and the corresponding new MSE values of all particles are presented in Table 9. 

 

Table 6 Randomly generated initial positions of all particles. 
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Particle 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 MSE 

1 14029.68 14980.2 15857.5 16808 17605 18340.16 70185.73 

2 13485.34 14156.19 14217.29 18109.05 18305.1 19046.01 426939.77 

3 13572.29 14395.55 15206.81 15572.54 16668.41 17504.68 31861.41 

4 14368.55 15098.79 15672.91 16495.91 17598.12 18025.22 55020.22 

 

 

Table 7 Randomly generated initial velocities of all particles. 

Particle 𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒 𝒗𝟓 𝒗𝟔 

1 –4.45 –75.51 –40.73 –20.91 39.05 –93.04 

2 13.48 –92.09 76.32 86.76 52.71 –58.5 

3 –82.46 14.13 –45.76 55.36 46.77 –38.01 

4 –31.41 –60.12 –26.92 –75.18 77.02 3.83 

 

 

Table 8 The initial Pbest of all particles; the global best position is created by particle 3 as its MSE is the 

least among 4 particles. 

Particle 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 MSE 

1 14029.68 14980.2 15857.5 16808 17605 18340.16 70185.73 

2 13485.34 14156.19 14217.29 18109.05 18305.1 19046.01 426939.77 

3 13572.29 14395.55 15206.81 15572.54 16668.41 17504.68 31861.41 

4 14368.55 15098.79 15672.91 16495.91 17598.12 18025.22 55020.22 

 

 

Table 9 The 2nd positions of all particles. 

Particle 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 MSE 

1 13929.68 14880.2 15757.5 16708 17505 18240.16 54313.57 

2 13565.06 14256.19 14317.29 18009.05 18205.1 18946.01 402776.58 

3 13498.08 14408.27 15165.63 15622.36 16710.5 17470.47 36398.23 

4 14268.55 14998.79 15572.91 16395.91 17498.12 17925.22 70457.58 

 

 

By comparing the MSE values shown in Table 8 with those listed in Table 9, it is obvious that par-

ticle 1 and particle 2 in Table 9 attained a better position than their own Pbest values so far. Thus, the 2 

particles update their own Pbest values, which are shown in Table 10. The new Gbest is obtained by par-

ticle 3, because its MSE value is the least among all the particles so far. The FTSHA-PSO model is ac-

complished by repeating the above steps until the maximum number of iterations is reached. Finally, the 

proper lengths of intervals are achieved by the Gbest value that the particle 3 attains so far, and are em-

ployed for obtaining the final forecasting. These obtained results used to forecast the new testing data in 

the testing phase based on Algorithm 3. 

 

 

Table 10 The 2nd Pbest of all particles and the Gbest value is obtained by particle 3. 

Particle 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 MSE 

1 13929.68 14880.2 15757.5 16708 17505 18240.16 54313.57 

2 13565.06 14256.19 14317.29 18009.05 18205.1 18946.01 402776.58 

3 13572.29 14395.55 15206.81 15572.54 16668.41 17504.68 31861.41 

4 14368.55 15098.79 15672.91 16495.91 17598.12 18025.22 55020.22 

 

 

 

Results and discussion 
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In this paper, the proposed model is applied to forecast enrollments of University of Alabama [4]. 

The forecasting results of proposed model are compared with those of corresponding models in the 

literature for various order and different intervals.  For implementing the experiment, we use visual studio 

2019 environment with C# programming language on an Intel Core i7 PC with 8GB RAM. Based on 

parameters in Table 11, the FTSHA-PSO model is executed 20 times on enrolments dataset with various 

number of orders and intervals. Then, the best result of all runs is recorded to be the final forecast result. 
All forecasted accuracies are evaluated by MSE and RMSE value which are presented in Eqs. (12) and 

(13), respectively. 

 

 

Table 11 The parameters of PSO used in the FTSHA-PSO model for forecasting enrolments. 

The parameters in PSO Values of parameters 

The number of particles N = 50 

The max number of iterations iter_max = 200 

The value of inertial weight  is decreased by 𝜔𝑚𝑎𝑥  = 0.9 to 𝜔𝑚𝑖𝑛  = 0.4 

The coefficient C1 = C2 = 2 

The position in search range: X = [13000, 20000] 

The velocity in search range: V = [–100, 100] 

 

 

Forecasting results based on the 1st-order fuzzy time series 

In order to evaluate the effectiveness of the proposed model based on the 1st-order FTS with the 

number of intervals equal to 7, the forecasting models is introduced in articles [33-36,27,29] were consid-

ered for comparison. From the parameters are set for the enrolments data. A comparison in term of RMSE 

value between the FTSHA-PSO model and its counterparts are shown in Table 12. Based on forecasting 

results in Table 12, the FTSHA-PSO model gets the smallest RMSE value of 172.9 among all the com-

pared models. Differences between the FTSHA-PSO model and models mentioned above is the way 

which the fuzzy relationship group and method of partitioning the universe of discourse are applied to 

establish the forecasting model. Three forecasting models in works [33-35] are constructed based on 

Chen's model to forecast different problems and apply information granules to partition, while the 

FTSHA-PSO model uses HA for determining unequal-sized interval lengths. In addition, 2 models in 

articles [27,29] based on HA and Chen’s fuzzy relationship groups to structure the forecasting model, 

while the FTSHA-PSO model uses an approach that benefits from the concept of time-variant FRG [17] 

to establish the forecasting model. Finally, the FTSHA-PSO is different from the model [36] in the parti-

tioning the universe of discourse they used, the former uses the HA which combines with PSO for finding 

the optimal interval lengths but latter utilizes the maximum spanning tree based fuzzy clustering algo-

rithm for partitioning intervals with different lengths in the intuitionistic FTS forecasting model. 

 

 

Table 12 A comparison of the forecasting results of the FTSHA-PSO model with its counterparts based 

on 1st-order FTS under 7 intervals. 

Year Real data [33] [34] [35] [27] [36] [29] FTSHA-PSO 

1972 13563 13486 13944 14279 13820 13500 13865 13619.24 

1973 13867 14156 13944 14279 13820 14155 14082 13729.16 

--- --- --- --- --- --- --- --- --- 

1991 19337 18808 18933 19257 19135 19575 19165 19321.66 

1992 18876 18808 18933 19257 19135 18855 15219 19167.49 

RMSE  578.3 506 445.2 441.3 350.9 210.9 172.9 

 

 

 

 

In addition, the FTSHA-PSO model is also executed 20 runs to be compared with various 1st-order 

FTS models under number of intervals of 14 intervals. Five forecasting models are presented in research 
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works [4,6,11,14,15,17,35] were selected for comparison. A comparison of the forecasted results is 

shown in Table 13 where the number of intervals is 14 for all forecasting models. At the same intervals, it 

is obvious that the FTSHA-PSO model has the MSE value 5123 which is the lowest among all forecast-

ing models compared.  

 

Table 13 A comparison of the forecasting results of the FTSHA-PSO model with its counterparts based 

on 1st-order FTS under number of intervals of 14. 

Year real data [4] [6] [11] [14] [15] [17] [35] FTSHA-PSO 

1971 13055         

1972 13563 14000 13653 13714 13555 13579 13434 13512 13558.12 

1973 13867 14000 13653 13714 13994 13812 13841 13998 13863.28 

---- ---- ---- ---- ---- ---- ---- ---- ----- ---- 

1991 19337 19000 19059 19149 19340 19260 19340 19666 19262.03 

1992 18876 19000 19059 19014 19014 19031 18820 18718 19035.97 

MSE  407507 31684 35324 22965 8224 7475 14534 6665.89 

RMSE  638.4 178 187.9 151.5 90.7 86.5 120.6 81.6 

 

 

Forecasting results based on the high-order fuzzy time series 

In this subsection, all historical enrolments dataset [4] covering a period from year 1971 to 1992 are 

partitioned into 2 parts to implement comparison results of the FTSHA-PSO with the ones of the existing 

methods, based on various high-orders. The 1st part including 19 observations from year 1971 to 1989 is 

used as training data set and the 2nd part consists of 3 observations is used as the testing data set. The 

performance of the FTSHA-PSO and the compared models are evaluated using the MSE and RMSE func-

tion.  

 

Experimental results in the training phase 

The FTSHA-PSO model is evaluated through the different high-order FLRs of fuzzy time series. In 

particular, in order to verify the superiority in the forecasted accuracy of the FTSHA-PSO model with 

number of intervals equal to 7, the accuracies from cited papers in [7,12,14,15,17] are selected for com-

paring. A comparison of the forecasting results is listed in Table 14, in what the number of intervals is 

established for all forecasting models equal to 7. At the same intervals 7, the FTSHA-PSO model gets the 

lowest MSE values which are 12457.8, 529.54, 443.47, 412.39, 366.42, 286.26, 163.27 and 371.13 for 

2nd-order, 3rd-order, 4th-order, 5th-order, 6th-order, 7th-order, 8th-order and 9th-order fuzzy time series, re-

spectively. It can be seen that the FTSHA-PSO model achieves more precise than any other existing mod-

els under different high-order fuzzy relationships at all. Among all fuzzy relationships is done in the mod-

el, the FTSHA-PSO model obtains the lowest MSE value of 14420.4 with 8th-order fuzzy relationships. 

The major difference between FTSHA-PSO model and the compared models is in establishing fuzzy 

relationship groups and optimization technique they used. In optimization method, the model [12] per-

forms genetic algorithm but the models in articles [14,15,17] and the FTSHA-PSO model proceed the 

PSO algorithm to achieve the best intervals, respectively. In addition to using PSO to find suitable inter-

vals, the FTSHA-PSO model incorporates HA to partition the different initial intervals of the Universe of 

discourse instead of equal length intervals. In the determining of fuzzy relationship groups, the FTSHA-

PSO model is constructed from model [17], the remaining models in articles [7,12,14,15] are designed 

based on Chen's structure [4]. From the above analysis, it can be seen that the FTSHA-PSO model gives 

more convincing forecasting results compared to its counterparts based on the high-order FTS. 

 

 

 

 

 

 

Table 14 A comparison of the results obtained between the FTSHA-PSO model and its counterparts 

based on the various high-order FTS with 7 intervals. 
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Order [7] [12] [14] [15] [17] FTSHA-PSO 

2 89093 67834 67123 19594 19868 12457.8 

3 86694 31123 31644 31189 31307 529.54 

4 89376 32009 23271 20155 23288 443.47 

5 94539 24984 23534 20366 23552 412.39 

6 98215 26980 23671 22276 23684 366.42 

7 104056 26969 20651 18482 20669 286.26 

8 102179 22387 17106 14778 17116 163.27 

9 102789 18734 17971 15251 17987 371.13 

Average MSE 95867.63 31377.5 28121.38 20261.38 22183 1878.79 

 

 

In addition, the FTSHA-PSO model is also compared with its counterparts which are introduced in 

papers [7,12,14,15,37] based on the different high-order fuzzy time series with number of intervals of 14. 

From the parameters are expressed in Table 6. The FTSHA-PSO model is executed 20 runs, and the best 

result of runs is taken to be the final result. A comparison of the forecasting accuracy with various high-

orders and the same number of intervals between the FTSHA-PSO model and its counterparts are listed in 

Table 15. Where, the FTSHA-PSO model is different from the model [37] in the way that the method of 

constructing forecasted model they used. The former applies the concept of the time-variant fuzzy rela-

tionship group but the latter proceeds the adaptive time-variant fuzzy time series to establish the forecast-

ing model, respectively. In addition, the forecasting model in article [7] and the FTSHA-PSO model, both 

of them use the 5th-order fuzzy relationship but our FTSHA-PSO model is much more superior in term of 

forecasting accuracy. Remaining forecasting models in articles [12,14,15], they use the fuzzy logical rela-

tionship with number of orders is larger, but the results obtained from our model are also better than the 

existing competing models. In particular, from Table 15, it is obvious that our forecasting model gets the 

MSE value of 18 which is the smallest among all compared forecasting models. This can conclude that 

the proposed model provides the superior forecasting performance compared to its counterparts based on 

the various high-order FLRs at all. 

 

 

Table 15 A comparison of the forecasting results obtained between the FTSHA-PSO model and its coun-

terparts based on the various high-order FTS with 14 intervals. 

Years Real data [7] [37] [12] [14] [15] FTSHA-PSO 

1971 13055       

1972 13563       

1973 13867  14934.5     

1974 14696  15590     

1975 15460  15422.9     

1976 15311 15500 15603    15314 

1977 15603 15500 15861    15608 

1978 15861 15500 16807    15858 

1979 16807 16500 16919 16846   16803 

1980 16919 16500 16388 16846 16890 16920 16920 

1981 16388 16500 15553.9 16420 16395 16388 16390 

--- --- --- --- --- --- --- --- 

1991 19337 19500 18876 19334 19337 19335 19332 

1992 18876 18500 14934.5 18910 18882 18882 18876 

MSE  86694 53084 1101 234 173 18 

RMSE  294.44 230.4 33.18 15.3 13.15 4.24 
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Figure 4 The curves present the MSE values between the FTSHA-PSO model and its counterparts based 

on the various high-order FTS. 

 

To be easily visualized, Figure 4 depicts the trend in term of forecasting accuracy between the 

FTSHA-PSO model and its counterparts with different high-order FLRs. From these curves, it can be 

seen that forecasting accuracy of the FTSHA-PSO model is more precise than those of compared models 

under different high-order FLRs at all. To sum up, demonstrations above show that the FTSHA-PSO 

model outperform the existing models based on high-order FTS model with different number of intervals 

in forecasting the enrolments of University of Alabama. 

 

Experimental results in the testing phase 

Based on the historical enrolments data for the past years, we can forecast the new enrollment for 

the next year only. For example, the historical data of enrollments from year 1971 to 1989, is utilized to 

forecast the new enrollment of year 1990. Similarly, a new enrolment of year 1991 can be forecasted 

based on the enrollments from years 1971 - 1990. After the training data have been well trained by the 

FTSHA-PSO, the future enrollment values could be accomplished to compare with the ones of the fore-

casting models presented in articles [4,11,14,37]. The comparison of the forecasted results produced 

based on the 3rd-order FLR the number of different intervals and the highest vote  𝑊ℎ = 20 (constant-

defined by the user) in Tables 16 and 17. From Tables 16 and 17, it can be seen that the FTSHA-PSO 

model obtains the lowest RMSEs value of 98.6 and 72.53 among 5 compared models, respectively. From 

these results indicate that the our FTSHA-PSO model is more precise than its counterparts based on 3rd-

order FTS with different number of intervals. 

 

 

Table 16 A comparison of the forecasting results between the FTSHA-PSO model and other models with 

the number of intervals = 7 and which use vote 𝑊ℎ = 20. 

Year Real data [4] [11] [14] 
ATVF-KM 

[37] 

ATVF-PSO 

[37] 
FTSHA-PSO 

1990 19328 18168 18059 18326 19525 19226 19308 

1991 19337 18909 18669 19212 19150 19182 19351.9 

1992 18876 19609 19083 19203 18933 18876 19045 

RMSE  773.66 576.66 484.16 160.43 107.29 98.6 

 

 

Table 17 A comparison of the forecasting results between the FTSHA-PSO model and other models with 

the number of intervals = 14 and which use vote 𝑊ℎ = 20. 

Year Real data [4] [11] [14] 
ATVF-KM 

[37] 

ATVF-PSO 

[37] 
FTSHA-PSO 

1990 19328 18162 17862 18120 19287 19238 19230 

1991 19337 18721 18633 19027 18811 19224 19336.74 

1992 18876 19221 19085 19137 18836 19224 18954.6 

RMSE  709 653.66 621.91 305.7 92.35 72.53 

 

 

 



Trends Sci. 2022; 19(3): 2157   17 of 18 

  

Conclusions 

In this paper, we propose a hybrid FTS forecasting model combining HA and PSO, namely FTSHA-

PSO. The FTSHA-PSO model has addressed 2 issues are considered to be important and greatly affect the 

forecasting accuracy that is the problem about determining of length of intervals and how to establish 

fuzzy relationship groups. To overcome the limitations of fuzzy time series models using the fuzzy rela-

tionship groups, the FTSHA-PSO model uses the concept of time variant fuzzy relationship group to cal-

culate the forecasting results output. Using this fuzzy relationship group has proved to be more appropri-

ate for practical use. In addition, the PSO optimization technique is applied in finding the optimal lengths 

of intervals from the universe of discourse to improve the forecast accuracy of the FTSHA-PSO model. 

Among mining techniques and finding the best solution, PSO is considered to perform better compared to 

other heuristic techniques in terms of success rate and solution quality. By combining HA and PSO tech-

nique, the forecasting efficiency of the FTSHA-PSO model can be significantly improved. The experi-

mental results on dataset of University of Alabama show that, in many cases, the FTSHA-PSO model gets 

better forecasting performance than the existing ones. Details of the comparison are shown in Tables 12 - 

17. Although our FTSHA-PSO model shows that the superior forecasting capability compared with exist-

ing forecasting models based on the high-order FLRs. However, determining FLR in high-order is more 

complicated and computationally more expensive than 1st-order. Therefore, development of new ap-

proaches that can automatically find the optimal order of the high-order FLRs is a worthy idea in FTS 

forecasting model. Those will be the future work closely related to this research. 
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